39-1.01 GENERAL
39-1.01A Summary
Section 39 includes specifications for producing and placing HMA by mixing aggregate and asphalt binder at a mixing plant and spreading and compacting the HMA mixture.

HMA includes one or more of the following types:

1. HMA, superpave (HMA-SP) Type A
2. HMA, superpave (HMA-SP) Type C
3. RHMA, superpave, gap graded (RHMA-SP-G)
4. OGFC including HMA-O, and RHMA-O

The RSSs for section 39 do not apply.

39-1.01B Definitions
- coarse aggregate: Aggregate retained on a 1/4-inch screen
- fine aggregate: Aggregate passing the 1/4-inch screen.
- leveling course: Thin layer of HMA used to correct minor variations in the longitudinal and transverse profile of the pavement before placement of other pavement layers.
- lower course: HMA-SP (Type A) layers below 0.2 feet from finished grade
- miscellaneous areas: Areas outside the traveled way such as:
 1. Median areas not including inside shoulders
 2. Island areas
 3. Sidewalks
 4. Gutters
 5. Gutter flares
 6. Ditches
 7. Overside drains
 8. Aprons at the ends of drainage structures
- modified binder: PG graded binder designated as polymer modified (PM) or terminal blend (TR), or any PG grade binder with rubber modifiers.
- processed RAP: RAP that has been fractioned.
- supplemental fine aggregate: Aggregate passing the no. 30 sieve, including hydrated lime, portland cement, and fines from dust collectors.
- surface course: Upper 0.2 feet of HMA-SP (Type A) exclusive of HMA-O or RHMA-O.
- top layer: Final riding surface exclusive of HMA-O or RHMA-O.

39-1.01C Submittals
39-1.01C(1) General
For miscellaneous areas and dikes, a JMF submittal is not required.

For JMF mix design, JMF verification, production start-up, and each 10,000 tons, submit AASHTO T 283 and AASHTO T 324 (modified) test results to the Engineer and electronically to:

Moisture_Tests@dot.ca.gov
At production start-up and within 1000 tons of the halfway point of production of HMA, submit samples split from your HMA production sample for AASHTO T 283 and AASHTO T 324 (Modified) tests to the Engineer and the Transportation Laboratory, Attention: Moisture Test.

Submit all completed quality control test results within 2 days of a request. Submit all quality control tests within 7 days of a request.

For tests performed under AASHTO T324 (Modified) as specified in section 39-1.01D(1), submit test data and 1 tested sample set within 3 business days of sampling.

39-1.01C(2) Job Mix Formula

39-1.01C(2)(a) General

For each type of HMA shown, submit your proposed JMF on the Contractor Job Mix Formula Proposal form along with:

1. Mix design documentation on Hot Mix Asphalt Design Data form dated within 12 months of submittal
2. MSDS for:
 1. Asphalt binder
 2. Base asphalt binder used in asphalt rubber binder
 3. CRM and asphalt modifier used in asphalt rubber binder
 4. Blended asphalt rubber binder mixture
 5. Supplemental fine aggregate except fines from dust collectors
 6. Antistrip additives
3. For RHMA-G-SP, asphalt rubber binder design and profile

The JMF must be based on a HMA mix design determined as described in the Superpave Mix Design SP-2 Manual by the Asphalt Institute.

Allow the Engineer 5 business days from a complete JMF submittal for document review of the aggregate qualities, mix design, and JMF. Do not start HMA production before verification and acceptance of JMF.

Submit a new JMF if you change any of the following:

1. Target asphalt binder percentage greater than ±0.2 percent
2. Asphalt binder supplier
3. Asphalt rubber binder supplier
4. Component materials used in asphalt rubber binder or percentage of any component materials
5. Combined aggregate gradation
6. Aggregate sources
8. Any material in the JMF

Submit a new JMF when the average binder content in a new fractionated RAP stockpile is more than ± 2.0 percent from the average binder content of the original fractionated RAP stockpile used in the mix design.

Submit a new JMF when the processed RAP specific gravity is more than ± 0.060 from the average maximum specific gravity reported on page 4 of your Contractor Hot Mix Asphalt Design Data form.

39-1.01C(2)(b) Mix Design

The HMA mix design must comply with AASHTO R 35 except:

1. Notes 3, 6, and 10 do not apply
2. AASHTO M 323 does not apply on combinations of aggregate gradations and asphalt binder contents to determine the OBC and HMA mixture qualities

Your Hot Mix Asphalt Design Data form must show documentation on aggregate quality.

For HMA mixtures utilizing RAP the maximum binder replacement is 25.0 percent for surface course and 40.0 percent for lower courses.
For HMA with a binder replacement percent less than or equal to 25 percent of optimum binder content, you may request that the performance graded asphalt binder grade with upper and lower temperature classifications be reduced by 6 °C from the specified grade.

For HMA with a binder replacement greater than 25 percent of optimum binder content and less than or equal to 40 percent of optimum binder content, you must use a performance graded asphalt binder grade with upper and lower temperature classifications reduced by 6 °C from the specified grade.

The mix design must comply with the quality characteristics of the following table:
Hot Mix Asphalt Mix Design Requirements

<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>Type A</th>
<th>RHMA-SP-G</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air voids content (%)</td>
<td>AASHTO T 269<sup>a</sup></td>
<td>N<sub>initial</sub> >8.0</td>
<td>N<sub>design</sub> = 4.0</td>
<td>N<sub>initial</sub> >8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N<sub>max</sub> >2.0</td>
<td>Specification</td>
<td>N<sub>design</sub> = 5.0</td>
</tr>
<tr>
<td>Gyration Compaction (number of gyrations)</td>
<td>AASHTO T 312</td>
<td>N<sub>initial</sub> 8</td>
<td>N<sub>design</sub> 85</td>
<td>N<sub>initial</sub> 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N<sub>max</sub> 130</td>
<td></td>
<td>N<sub>design</sub> 80-90</td>
</tr>
<tr>
<td>Voids in mineral aggregate (% min.)</td>
<td>SP-2<sup>c</sup></td>
<td>18.0</td>
<td>16.0</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>Asphalt Mixtures</td>
<td>14.5</td>
<td>19.0–24.0</td>
<td>19.0–24.0</td>
</tr>
<tr>
<td></td>
<td>Volumetrics<sup>c</sup></td>
<td>13.5</td>
<td>13.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Voids filled with asphalt (%)</td>
<td>SP-2<sup>c</sup></td>
<td>65.0–75.0</td>
<td>65.0–75.0</td>
<td>Report Only</td>
</tr>
<tr>
<td></td>
<td>Asphalt Mixtures</td>
<td>65.0–75.0</td>
<td>65.0–75.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volumetrics<sup>c</sup></td>
<td>65.0–75.0</td>
<td>Report Only</td>
<td>60.0-70.0</td>
</tr>
<tr>
<td>Dust proportion</td>
<td>SP-2<sup>c</sup></td>
<td>0.9–2.0</td>
<td>0.6–1.3</td>
<td>0.6–1.3</td>
</tr>
<tr>
<td></td>
<td>Asphalt Mixtures</td>
<td>Report Only</td>
<td>0.6–1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volumetrics<sup>c</sup></td>
<td>Report Only</td>
<td>0.6–1.3</td>
<td></td>
</tr>
<tr>
<td>Hamburg wheel track (minimum number of passes at 0.5 inch average rut depth)</td>
<td>AASHTO T 324<sup>d,e</sup></td>
<td>10,000</td>
<td>15,000</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>PG 58</td>
<td>15,000</td>
<td>20,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>PG 64</td>
<td>20,000</td>
<td>25000</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>PG-70</td>
<td>25,000</td>
<td>25000</td>
<td>25,000</td>
</tr>
<tr>
<td></td>
<td>PG-76 or higher</td>
<td>15000</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>Hamburg wheel track (inflection point minimum number of passes)</td>
<td>AASHTO T 324<sup>d,e</sup></td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>PG 58</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>PG 64</td>
<td>12,500</td>
<td>12,500</td>
<td>12,500</td>
</tr>
<tr>
<td></td>
<td>PG-70</td>
<td>12,500</td>
<td>12,500</td>
<td>12,500</td>
</tr>
<tr>
<td></td>
<td>PG-76 or higher</td>
<td>15000</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>Moisture susceptibility (minimum dry strength, psi)</td>
<td>AASHTO T 283<sup>d</sup></td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Moisture susceptibility (tensile strength ratio, %)</td>
<td>AASHTO T 283<sup>df</sup></td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

^aCalculate the air voids content of each specimen using AASHTO T 275 to determine bulk specific gravity AASHTO T 209 Method A to determine theoretical maximum specific gravity. Under AASHTO T 209 use a digital monometer and pycnometer when performing AASHTO T 209.

^bSuperpave gyratory compactor ram pressure may be increased to a maximum of 825kPa, and specimens may be held at a constant height for a maximum of 90 minutes.

^cMeasure bulk specific gravity using AASHTO T 275.

^dTest plant produced HMA.

^eTest as specified in section 39-1.01D(1).

^fFreeze thaw required.

If the test results for AASHTO T 283 or AASHTO T 324 (Modified) for untreated plant produced HMA is less than minimum requirements for HMA-mix design, determine the plasticity index of the aggregate.
blend under California Test 204. The antistrip treatment must be based on plasticity index in compliance with the following table:

<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>Treatment requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasticity index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasticity index from 4 to 10^a</td>
<td>California Test 204</td>
<td>Dry hydrated lime with marination Lime slurry with marination</td>
</tr>
<tr>
<td>Plasticity index less than 4</td>
<td>California Test 204</td>
<td>Liquid Dry hydrated lime without marination Dry hydrated lime with marination Lime slurry with marination</td>
</tr>
</tbody>
</table>

^aIf the plasticity index is greater than 10, do not use that aggregate blend.

If the tensile strength ratio test result for treated plant produced RHMA-SP-G is less than the RHMA-SP-G mix design requirement for tensile strength ratio, the minimum tensile strength ratio requirement is waived, but you must use any of the following antistrip treatments:

1. HMA aggregate lime treatment – slurry method
2. HMA aggregate lime treatment – dry lime method
3. Liquid antistrip treatment using 0.5 percent liquid antistrip

39-1.01C(2)(c) Liquid Antistrip Treatment

If liquid antistrip (LAS) treatment is used, submit the following with your proposed JMF submittal:

1. MSDS for LAS.
2. One 1-pint sample.
3. Infrared analysis including copy of absorption spectra.
4. Certified copy of test results and an MSDS for each LAS lot.
5. Certificate of compliance for each LAS shipment. With each certificate of compliance, include:
 5.1. Your signature and printed name.
 5.2. Shipment number
 5.3. Material type.
 5.4. Material specific gravity
 5.5. Refinery.
 5.6. Consignee.
 5.7. Destination.
 5.8. Quantity.
 5.9. Contact or purchase order number.
 5.10. Shipment date
6. Proposed proportions for LAS. If you change the brand or type of LAS, submit a new JMF.

For each job site delivery of LAS, submit one 1/2-pint sample to METS. Submit shipping documents. Label each LAS sampling container with:

1. LAS type
2. Application rate
3. Sample date
4. Contract number

At the end of each day’s production shift, submit production data in electronic and printed media. Present data on electronic media in tab delimited format. Use line feed carriage return with 1 separate record per line for each production data set. Allow sufficient fields for the specified data. Include data titles at least once per report. For each mixing operation type, submit the following items in order:

1. Batch mixing:
 1.1. Production date
1.2. Time of batch completion
1.3. Mix size and type
1.4. Each ingredient's weight
1.5. Asphalt binder content as a percentage of the total weight of mix
1.6. LAS content as a percentage of the asphalt binder weight

2. Continuous mixing
2.1. Production date
2.2. Data capture time
2.3. Mix size and type
2.4. Flow rate of wet aggregate collected directly from the aggregate weigh belt
2.5. Aggregate moisture content as a percentage of the dry aggregate weight
2.6. Flow rate of asphalt binder collected from the asphalt binder meter
2.7. Flow rate of LAS collected from the LAS meter
2.8. Asphalt binder content as percentage of the total weight of mix calculated from:
 2.8.1. Aggregate weigh belt output
 2.8.2. Aggregate moisture input
 2.8.3. Asphalt binder meter output
2.9. LAS content as percentage of the asphalt binder weight calculated from:
 2.9.1. Asphalt binder meter output
 2.9.2. LAS meter output

39-1.01C(2)(d) Lime Treatment
If aggregate lime treatment is used, submit the following with your proposed JMF:

1. Exact lime proportions for fine and coarse virgin aggregate with the proposed JMF
2. If marination is required, the averaged aggregate quality test results within 24 hours of sampling
3. For dry lime aggregate treatment, a treatment data log from the dry lime and aggregate proportioning device in the following order:
 3.1 Treatment date
 3.2. Time of day the data is captured
 3.3 Aggregate size being treated
 3.4. HMA type and mix aggregate size
 3.5. Wet aggregate flow rate collected directly from the aggregate weigh belt
 3.6. Aggregate moisture content, expressed as a percent of the dry aggregate weight
 3.7. Flow rate of dry aggregate calculated from the flow rate of wet aggregate
 3.8. Dry lime flow rate
 3.9. Lime ratio from the accepted JMF for each aggregate size being treated
 3.10. Lime ratio from the accepted JMF for the combined aggregate
 3.11. Actual lime ratio calculated from the aggregate weigh belt output, the aggregate moisture input, and the dry lime meter output, expressed as a percent of the dry aggregate weight
 3.12. Calculated difference between the authorized lime ratio and the actual lime ratio
4. For lime slurry aggregate treatment, a treatment data log from the slurry proportioning device in the following order:
 4.1. Treatment date
 4.2. Time of day the data is captured
 4.3 Aggregate size being treated
 4.4. Wet aggregate flow rate collected directly from the aggregate weigh belt
 4.5. Moisture content of the aggregate just before treatment, expressed as a percent of the dry aggregate weight
 4.6. Dry aggregate flow rate calculated from the wet aggregate flow rate
 4.7. Lime slurry flow rate measured by the slurry meter
 4.8. Dry lime flow rate calculated from the slurry meter output
 4.9. Authorized lime ratio for each aggregate size being treated
 4.10. Actual lime ratio calculated from the aggregate weigh belt and the slurry meter output, expressed as a percent of the dry aggregate weight
 4.11. Calculated difference between the authorized lime ratio and the actual lime ratio
 4.12. Dry lime and water proportions at the slurry treatment time
Each day during lime treatment, submit the treatment data log on electronic media in tab delimited format on a removable CD-ROM storage disk. Each continuous treatment data set must be a separate record using a line feed carriage return to present the specified data on 1 line. The reported data must include data titles at least once per report.

39-1.01C(2)(e) Asphalt Rubber Binder
For the asphalt rubber binder used, submit:

1. Log of production daily.
2. Certificate of compliance with test results for CRM and asphalt modifier with each truckload delivered to the HMA plant. The certificate of compliance for asphalt modifier must represent no more than 5,000 lbs.
3. Submit certified weight slips for the CRM and asphalt modifier furnished.

Submit a certificate of compliance for the asphalt rubber binder. With the certificate of compliance, submit test results for CRM and asphalt modifier with each truckload delivered to the HMA plant. A certificate of compliance for asphalt modifier must not represent more than 5,000 lbs.

39-1.01C(2)(f) Reclaimed Asphalt Pavement
Submit QC test results for RAP gradation with the combined aggregate gradation within 2 days of taking RAP samples during HMA-SP (Type A) and HMA-SP (Type C) production.

39-1.01C(3) Quality Control Plan
With your proposed JMF submittal, submit a QC plan for HMA. The QC plan must describe the organization and procedures for:

1. Controlling HMA quality characteristics
2. Obtaining samples, including sampling locations
3. Establishing, implementing, and maintaining QC
4. Determining when corrective actions are needed
5. Implementing corrective actions
6. Taking samples, including location of sampling

The QCP must address the elements affecting HMA quality including:

1. Aggregate
2. Asphalt binder
3. Additives
4. Production
5. Paving

The QC plan must include aggregate quality control sampling and testing during lime treatment.

The Engineer reviews the QC plan within 5 business days from the submittal. Do not start HMA production until the Engineer authorizes the plan.

If QC procedures, personnel, tester qualifications, or lab accreditation status change, submit a QC plan supplement at least 3 business days before implementing proposed changes.

39-1.01C(4) Profilograms
Submit final profilograms including 1 electronic copy of profile information in Microsoft Excel and 1 electronic copy of longitudinal pavement profiles in "erd" format or other ProVAL compatible format to the Engineer and to:

Smoothness@dot.ca.gov

39-1.01C(5) Data Cores
At least 3 business days before starting coring, submit proposed methods and materials for backfilling data core holes.

Submit a summary of data cores taken and a photograph of each data core to the Engineer and to:
39-1.01D Quality Control and Assurance

39-1.01D(1) General

AASHTO T 324 (Modified) is AASHTO T 324, "Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA)," with the following parameters:

1. Target air voids must equal 7 ± 1 percent
2. Number of test specimens must be 4
3. Test specimen must be a 6-inch gyratory compacted specimen
4. Test temperature must be set at 140 ± 2 degrees F
5. Measurements for impression must be taken at every 100 passes
6. Inflection point defined as the number of wheel passes at the intersection of the creep slope and the stripping slope
7. Testing shut off must be set at 25,000 passes

During production, take samples under California Test 125.

If the Engineer requests, sample the following materials in the presence of the Engineer and place in labeled containers weighing no more than 50 lbs. each:

1. Coarse, fine, and supplemental fine aggregate from stockpiles, cold feed belts, or hot bins. Samples must include at least 150 lbs. for each coarse aggregate, 100 lbs. for each fine aggregate, and 10 lbs. for each type of supplemental fines. The Department combines these aggregate samples to comply with the JMF target values submitted on Contractor Job Mix Formula Proposal form.
2. RAP from stockpiles or RAP system. Samples must be at least 100 lbs.
3. Asphalt binder from the binder supplier. Samples must be in four 1-quart cylindrical shaped cans with open top and friction lids.
4. Asphalt rubber binder with the components blended in the proportions to be used. Samples must be in four 1-quart cylindrical shaped cans with open top and friction lids.

Notify the Engineer at least 2 business days before sampling materials. For aggregate and RAP, split the samples into at least 4 parts. Submit 3 parts to the Engineer and use 1 part for your testing.

39-1.01D(2) Verification and Acceptance of Job Mix Formula

For OGFC, the Engineer determines the asphalt binder content under California Test 368 within 20 days of your complete JMF submittal and provides you a Hot Mix Asphalt Verification form.

Based on your testing and production experience, you may submit an adjusted aggregate gradation TV on a Contractor Job Mix Formula Proposal form before verification testing. Aggregate gradation TV must be within the TV limits specified in the aggregate gradation tables.

Asphalt binder set point for HMA verification must be the OBC specified on your Contractor Hot Mix Asphalt Design Data form. When RAP is used, asphalt binder set point for HMA must be:

\[
\text{Asphalt Binder Set Point} = \frac{BC_{OBC}}{100} - R_{RAP} \left[\frac{BC_{RAP}}{100} \right] + \frac{BC_{OBC}}{100} \left(1 - \frac{BC_{OBC}}{100} \right)
\]

Where:
- \(BC_{OBC}\) = optimum asphalt binder content, percent based on total weight of mix
- \(R_{RAP}\) = RAP ratio by weight of aggregate
- \(BC_{RAP}\) = asphalt binder content of RAP, percent based on total weight of RAP mix
For HMA, the Engineer verifies the JMF from samples taken from HMA produced by the plant to be used. Notify the Engineer at least 2 business days before sampling materials.

In the Engineer's presence and from the same production run, take samples of:

1. Aggregate – 100 pounds minimum
2. Asphalt binder- 2 quarts minimum
3. RAP-50 pounds minimum
4. HMA- 250 pounds minimum

Sample aggregate from cold feed belts or hot bins. Sample RAP from the RAP system.

You may sample from a different project including a non-Department project if you make arrangements for the Engineer to be present during sampling.

For aggregate, RAP, and HMA, split the samples into at least 4 parts and label their containers. Submit 3 parts to the Engineer and use 1 part for your testing.

The Engineer verifies each proposed JMF within 20 days of receiving verification samples. Verification is testing for compliance with the specifications for:

1. Aggregate quality
2. Aggregate gradation (JMF TV ± tolerance)
3. Asphalt binder content (JMF TV ± tolerance)
4. HMA quality specified in the table Hot Mix Asphalt Mix Design Requirements except:
 4.1. Air voids content (design value ± 1.5 percent)
 4.2. VMA (minimum HMA mix design requirement +3.0 -1.0)
 4.3. Dust proportion (design value +/- 0.5)

To verify the JMF air voids content the Engineer uses an average of three briquettes for air voids content, VMA, VFA, and Dust Proportion The Engineer tests plant produced material.

If the Engineer verifies the JMF, the Engineer provides you a Hot Mix Asphalt Verification form.

If the Engineer's tests on plant-produced samples do not verify the JMF, the Engineer notifies you and you must submit a new JMF or submit an adjusted JMF based on your testing. JMF adjustments may include a change in:

1. Asphalt binder content target value up to ±0.2 percent from the OBC value submitted on Hot Mix Asphalt Design Data form except do not adjust the target value for asphalt rubber binder for RHMA-G-SP below 7.5 percent by total weight of mixture.
2. Aggregate gradation target values within the target value limits specified in the aggregate gradation table.

You may adjust the JMF only once due to a failed verification test. An adjusted JMF requires a new Contractor Job Mix Formula Proposal form and Hot Mix Asphalt Design Data form and verification of a plant-produced sample.

The Engineer reverifies the JMF if HMA production has stopped for longer than 30 days and the verified JMF is less than 12 months old.

For each HMA type and aggregate size specified, the Engineer verifies up to 2 proposed JMF submittals including a JMF adjusted after verification failure. If you submit more than 2 JMF for each type of HMA and aggregate size, the Engineer deducts $3,000 from payments for each verification exceeding this limit. This deduction does not apply to verifications initiated by the Engineer or if a JMF expires while HMA production is stopped longer than 30 days.

If you have a verified Hot Mix Asphalt Verification form, the Engineer will verify 1 binder source change for each HMA type and aggregate size specified. The Engineer deducts $2,000 from payments for this verification.

You may start HMA production if:
1. The Engineer's review of the JMF shows compliance with the specifications
2. The Department has verified the JMF within 12 months before HMA production
3. The Engineer accepts the verified JMF

39-1.01D(3) Quality Control Plan
Implement your QC plan. If a change to your QC plan is needed, do not implement the change without authorization.

39-1.01D(4) Preparing Conference
Meet with the Engineer at a preparing conference at a mutually agreed time and place. Discuss the QC plan and the methods of performing production and paving work.

The following personnel must attend the preparing conference:

1. Project Manager
2. Superintendent
3. HMA plant manager
4. HMA paving foreman
Minimum Quality Control Requirements for Aggregate

<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>Minimum sampling and testing frequency</th>
<th>HMA-SP</th>
<th>Type A</th>
<th>RHMA-SP-G</th>
<th>OGFC</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate gradation*</td>
<td>AASHTO T 27</td>
<td>1 per 750 tons and any remaining part</td>
<td>JMF ± Tolerance<sup>b</sup></td>
<td>JMF ± Tolerance<sup>b</sup></td>
<td>JMF ± Tolerance<sup>b</sup></td>
<td>JMF ± Tolerance<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Sand equivalent (min.)<sup>c</sup></td>
<td>AASHTO T 176</td>
<td>47</td>
<td>47</td>
<td>--</td>
<td>--</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Aggregate moisture content at continuous mixing plants and RAP moisture content at continuous mixing plants and batch mixing plants</td>
<td>AASHTO T 329</td>
<td>1 per 1500 tons and any remaining part</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Percent of crushed particles Coarse aggregate (%, min.)</td>
<td>AASHTO T 335</td>
<td>95</td>
<td>--</td>
<td>90</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One fractured face</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two fractured faces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine aggregate (% min.) (Passing No. 4 sieve and retained on No. 8 sieve.)</td>
<td>AASHTO T 304, Method A</td>
<td>One per 10,000 tons or 2 per project whichever is more</td>
<td>70</td>
<td>70</td>
<td>90</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Los Angeles Rattler (% max.)</td>
<td>AASHTO T 96</td>
<td>12</td>
<td>--</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss at 100 rev.</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss at 500 rev.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat and elongated particles (% max. by weight @ 5:1)</td>
<td>ASTM D 4791</td>
<td>Report only</td>
<td>Report only</td>
<td>Report only</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine aggregate angularity (% min.)</td>
<td>AASHTO T 304, Method A</td>
<td>45</td>
<td>45</td>
<td>--</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*If RAP is used, test the combined aggregate gradation under Laboratory Procedure LP-9.

^bComply with the allowable tolerances in section 39-1.02E.

^cReport the average of 3 tests from a single split sample. Use of a Sand Reader Indicator is required as shown in AASHTO T 176, Figure 1. Sections 4.7, 4.8, 7.1.2, 8.4.2 and 8.4.3 do not apply.
<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test method</th>
<th>Minimum sampling and testing frequency</th>
<th>HMA-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type A</td>
</tr>
<tr>
<td>Asphalt binder content (%)</td>
<td>AASHTO T 308 Method A</td>
<td>1 per 750 tons and any remaining part</td>
<td>JMF - 0.3, + 0.5</td>
</tr>
<tr>
<td>HMA moisture content (%, max.)</td>
<td>AASHTO T 329</td>
<td>1 per 2,500 tons but not less than 1 per paving day</td>
<td>1.0</td>
</tr>
<tr>
<td>Air voids content (%) a</td>
<td>AASHTO T 269</td>
<td>One per 4,000 tons or 2 per 5 business days, whichever is more</td>
<td>4 ± 1.5</td>
</tr>
<tr>
<td>Voids filled with asphalt (%)</td>
<td>SP-2 Asphalt Mixtures Volumetrics a</td>
<td>One per 10,000 tons or 2 per project which-ever is more</td>
<td>65.0–75.0</td>
</tr>
<tr>
<td>Voids in mineral aggregate (% min.)</td>
<td>SP-2 Asphalt Mixtures Volumetrics a</td>
<td>16.5</td>
<td>--</td>
</tr>
<tr>
<td>Dust proportion (1/4" and 3/8" gradings)</td>
<td>SP-2 Asphalt Mixtures Volumetrics a</td>
<td>0.9–2.0</td>
<td>Report only</td>
</tr>
</tbody>
</table>

* a Determine bulk specific gravity using AASHTO T 275.
Minimum Quality Control Requirements for in Place HMA

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test method</th>
<th>Minimum sampling and testing frequency</th>
<th>HMA-SP Type A</th>
<th>RHMA-SP-G</th>
<th>OGFC</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of theoretical maximum density (%) by core<sup>a</sup></td>
<td>California Test 375</td>
<td>2 per paving day (min.)</td>
<td>92–97</td>
<td>92–97</td>
<td>--</td>
<td>91–96</td>
</tr>
<tr>
<td>Percent of theoretical maximum density by Nuclear gauge (%)<sup>a, b, c</sup></td>
<td>California Test 375</td>
<td>3 per 250 tons but not less than 3 per paving day</td>
<td>92–97</td>
<td>92–97</td>
<td>--</td>
<td>91–96</td>
</tr>
<tr>
<td>Hamburg wheel track (minimum number of passes at 0.5 inch average rut depth)</td>
<td>AASHTO T 324 (Modified)<sup>d</sup></td>
<td>One per 10,000 tons or 1 per project whichever is more</td>
<td>10,000</td>
<td>15,000</td>
<td>20,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>PG 58</td>
<td>15,000</td>
<td>--</td>
<td>10,000</td>
<td>15,000</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>PG 64</td>
<td>20,000</td>
<td>20,000</td>
<td>12,500</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PG-70</td>
<td>25,000</td>
<td>--</td>
<td>15,000</td>
<td>12,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PG-76 or higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamburg wheel track (inflection point minimum number of passes)<sup>e</sup></td>
<td>AASHTO T 324 (Modified)<sup>d</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PG 58</td>
<td></td>
<td>10,000</td>
<td>15,000</td>
<td>--</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>PG 64</td>
<td></td>
<td>10,000</td>
<td>12,500</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PG-70</td>
<td></td>
<td>12,500</td>
<td>15,000</td>
<td>12,500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PG-76 or higher</td>
<td></td>
<td>15,000</td>
<td>--</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>Moisture susceptibility (minimum dry strength, psi)</td>
<td>AASHTO T 283</td>
<td>One per 10,000 tons or 1 per project whichever is more</td>
<td>120</td>
<td>120</td>
<td>--</td>
<td>120</td>
</tr>
<tr>
<td>Moisture susceptibility (tensile strength ratio, %)<sup>e</sup></td>
<td>AASHTO T 283</td>
<td></td>
<td>70</td>
<td>70</td>
<td>--</td>
<td>70</td>
</tr>
</tbody>
</table>

^aDetermine theoretical maximum density if any of the following applies:
1. 1/2-inch, 3/8-inch, or 1/4-inch grading is used and the specified total paved thickness is at least 0.15 foot.
2. 1- inch and 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.

^bDetermine theoretical maximum density under AASHTO T 209 Method A at the frequency specified for Test Maximum Density in California Test 375, Part 5.D. Use a digital manometer and a pycnometer when performing AASHTO T 209.

^cVerify gauge correlation to cores every 10,000 tons utilizing the average of two cores.

^dTest as specified in section 39-1.01D(1).

^eFreeze thaw required.
Miscellaneous Minimum Quality Control Requirements

<table>
<thead>
<tr>
<th>Quality Characteristic</th>
<th>Test method</th>
<th>Minimum sampling and testing frequency</th>
<th>HMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type A</td>
</tr>
<tr>
<td>Smoothness</td>
<td>AASHTO R57-10</td>
<td>--</td>
<td>12-foot straightedge, must-grind,</td>
</tr>
<tr>
<td>Asphalt rubber binder viscosity @ 375 °F (centipoises)</td>
<td>LP-11</td>
<td>Once per hour, minimum of 1 test per batch</td>
<td>--</td>
</tr>
<tr>
<td>Asphalt modifier</td>
<td>ASTM D 445</td>
<td>1 per truckload delivered to the RHMA-G-SP production facility</td>
<td>--</td>
</tr>
<tr>
<td>Crumb rubber modifier</td>
<td>CT 208</td>
<td>1 per truckload delivered to the RHMA-G-SP production facility</td>
<td>--</td>
</tr>
</tbody>
</table>

Prepare 3 briquettes for air voids content and VMA determination. Report the average of 3 tests.

For any quality characteristic except smoothness, if any 2 quality control test results for 1 day's production do not comply with the specifications:

1. Notify the Engineer
2. Take corrective action
3. Show how you will comply with the specifications before resuming production and placement on the State highway

For any quality characteristic except smoothness, if any 3 quality control test results for 1 day's production do not comply with the specifications:

1. Stop production
2. Notify the Engineer
3. Take corrective action
4. Show how you will comply with the specifications before resuming production and placement on the State highway

39-1.01D(6) Asphalt Rubber Binder

Take asphalt rubber binder samples from the feed line connecting the asphalt rubber binder tank to the HMA plant. Sample and test asphalt rubber binder under Laboratory Procedure LP-11. Use an AASHTO-certified laboratory for testing.

Test asphalt rubber binder for compliance with the viscosity requirements in section 39-1.02D(2)(b). During asphalt rubber binder production and HMA production using asphalt rubber binder, measure viscosity every hour with not less than 1 reading for each asphalt rubber binder batch. Log measurements with corresponding time and asphalt rubber binder temperature. Sample and test gradation and wire and fabric content of CRM once per 10,000 lbs. of scrap tire CRM and once per 3,400 lbs. of high natural CRM. Sample and test scrap tire CRM and high natural CRM separately.
39-1.01D(7) Aggregate
Laboratories testing aggregate qualities and preparing the mix design and JMF must be qualified under AASHTO Materials Reference Laboratory program (AMRL), and the Department's Independent Assurance Program. Take samples under California Test 125.

Determine the aggregate moisture content in continuous mixing plants at least twice a day during production.

39-1.01D(8) Reclaimed Asphalt Pavement
Sample and test processed RAP at a minimum frequency of 1 sample per 1000 tons with a minimum of 6 samples per fractionated stockpile to assure that its asphalt binder content and specific gravity meet the processed RAP quality characteristics. If a fractionated RAP stockpile is augmented, sample and test processed RAP quality characteristics at a minimum frequency of 1 sample per 500 tons of augmented RAP.

The quality characteristic for processed RAP asphalt binder content must be within ± 2.0 percent of the average fractionated RAP stockpile asphalt binder content when tested under ASTM D 2172 (Method B). If new fractionated RAP stockpiles piles are required, the average binder content of the new fractionated RAP stockpile must be within ± 2.0 percent of the average binder content of the original fractionated RAP stockpile.

The quality characteristic for maximum specific gravity for processed RAP, must be within ± 0.06 when tested under AASHTO T 209, of the average maximum specific gravity reported on page 4 of your Contractor Hot Mix Asphalt Design Data form.

During production, sample RAP twice daily and perform QC testing for:
1. Aggregate gradation at least once a day under Laboratory Procedure LP-9
2. Moisture content at least twice a day during and adjust the plant controller

39-1.01D(9) Liquid Antistrip Treatment
For continuous mixing and batch mixing operations, sample asphalt binder before adding LAS. For continuous mixing operations, sample combined asphalt binder and LAS after the static mixer.

39-1.01D(10) Aggregate Lime Treatment
For lime slurry aggregate treatment and dry lime aggregate treatment with marination, sample and test before treatment at the minimum frequencies shown in the following table:

<table>
<thead>
<tr>
<th>Aggregate Quality Control During Lime Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality characteristic</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Sand equivalent</td>
</tr>
<tr>
<td>Percent of crushed particles</td>
</tr>
<tr>
<td>Los Angeles Rattler</td>
</tr>
<tr>
<td>Fine aggregate angularity</td>
</tr>
<tr>
<td>Flat and elongated particles</td>
</tr>
</tbody>
</table>

Note: During lime treatment, sample coarse and fine aggregate from individual stockpiles. Combine aggregate in the JMF proportions. Run tests for aggregate quality in triplicate and report test results as the average of 3 tests.

For lime slurry aggregate treatment, determine the aggregate moisture content at least once during each 2 hours of treatment. Calculate moisture content under AASHTO T 329 and report it as a percent of dry aggregate weight. Use the moisture content calculations as a set point for the proportioning process controller.
39-1.01D(11) Production Start-up Evaluation

The Engineer evaluates HMA production and placement at production start-up.

Within the first 750 tons produced on the first day of HMA production, in the Engineer's presence and from the same production run, take samples of:

1. Aggregate
2. Asphalt binder
3. RAP
4. HMA

Sample aggregate from cold feed belts or hot bins. Take RAP samples from the RAP system. Sample HMA under California Test 125. You must identify your sampling location in your Quality Control Plan.

For aggregate, RAP, and HMA, split the samples into at least 4 parts and label their containers. Submit 3 split parts to the Engineer and keep 1 part.

You and the Engineer must test the split samples and report test results within 3 business days of sampling. If you proceed before receipt of the test results, the Engineer may consider the HMA placed to be represented by these test results.

Take 4-inch or 6-inch diameter density cores within the first 750 tons on the first day of HMA production. For each density core, the Engineer reports the bulk specific gravity determined under AASHTO T 275, Method A in addition to the percent of theoretical maximum density. You must test for in-place density at the density core locations and include them in your production tests for percent of theoretical maximum density.

39-1.01D(12) Nuclear Gauge Density

During HMA placement determine HMA density using a nuclear gauge. On the 1st day of production, develop a correlation factor between cores and nuclear gauge under California Test 375. Take a minimum of 3 nuclear gauge density readings for every 250 tons of HMA placed at random locations you select.

39-1.01D(13) Smoothness

39-1.01D(13)a General

Determine pavement smoothness with an inertial profiler (IP) and straightedge, analyzing the data with FHWA's engineering software ProVAL, and correcting deficient smoothness.

If portland cement concrete is placed on HMA-SP (Type A) or HMA-SP (Type C):

1. Cold plane the HMA-SP (Type A) or HMA-SP (Type C) finished surface to within specified tolerances if it is higher than the grade specified by the Engineer.
2. Remove and replace HMA-SP (Type A) or HMA-SP (Type C) if the finished surface is lower than 0.05 foot below the grade specified by the Engineer.

Test pavement smoothness using an IP except use a 12-foot straightedge at the following locations:

1. Traffic lanes less than 1,000 feet in length including ramps, turn lanes, and acceleration and deceleration lanes
2. HMA pavement within 3 feet from and parallel to the construction joint formed between curbs, gutters, or existing pavement
3. Areas within 15 feet of manholes
4. Shoulders
5. Weigh-in-motion areas
6. Miscellaneous areas such as medians, gore areas, turnouts, and maintenance pullouts

Where IP testing is required, pavement smoothness for each lane must be determined by the international roughness index (IRI) for the left and right wheel paths in an individual lane and then averaging the results. The average of the IRIs from the left and right wheel paths for the same lane is the mean roughness index (MRI) of the lane. The wheel paths are a pair of lines 3 feet from and parallel to the edge of a lane. Left and right wheel paths are based on the direction of travel.
Where IP testing is required, identify areas of localized roughness. Areas of localized roughness must be identified using the ProVAL smoothness assurance analysis by calculating continuous IRI for each wheel path with a 25-foot interval using a 250 mm filter.

39-1.01D(13)b Submittals
At least 5 business days before start of initial profiling or changing profiler or operator, submit:

1. IP certification issued by Texas Transportation Institute. The certification must be not more than 12 months old.
2. Operator certification for the IP issued by Texas Transportation Institute. The certification must be not more than 36 months old.
3. List of manufacturer's recommended test procedures for IP calibration and verification.

Within 2 business days after cross correlation testing, submit ProVAL profiler certification analysis report for cross correlation test results performed on test section to the Engineer and to the electronic mailbox address:

 smoothness@dot.ca.gov

Within 2 business days after each day of inertial profiling, submit profile data to the Engineer and to the electronic mailbox address:

 smoothness@dot.ca.gov

Profiling data must include:

1. Raw profile data for each lane.
2. ProVAL ride quality analysis report for IRIs of left and right wheel paths of each lane. Submit in pdf file format.
3. ProVAL ride quality analysis report for MRIs of each lane. Submit in pdf file format.
4. ProVAL smoothness assurance analysis report for IRIs of left wheel path. Submit in pdf file format.
5. ProVAL smoothness assurance analysis report for IRIs of right wheel path. Submit in pdf file format.
6. GPS data file for each lane in GPS exchange. Submit in GPS eXchange file format.
7. Manufacturer's recommended IP calibration and verification test results.
8. AASHTO IP calibration and verification test results including bounce, block, and distance measurement instrument (DMI).

Submit the raw profile data in unfiltered electronic pavement profile file (PPF) format. Name the PPF file using the following naming convention:

 YYYYMMDD_TTCCCRRR_D_L_W_S_X_PT.PPF

where:

 YYYY = year
 MM = Month, leading zero
 DD = Day of month, leading zero
 TT = District, leading zero
 CCC = County, 2 or 3 letter abbreviation as shown in section 1-1.08
 RRR = Route number, no leading zeros
 D = Traffic direction as NB, SB, WB, or EB
 L = Lane number from left to right in direction of travel
 W = Wheel path as "L" for left, "R" for right, or "B" for both
 S = Beginning station to the nearest foot (i.e., 10+20) or beginning post mile to the nearest hundredth (i.e., 25.06) no leading zero
 X = Profile operation as "EXIST" for existing pavement, "INTER" for after prepaving smoothness correction, "PAVE" for after paving, and "CORR" for after final surface pavement correction
 PT = Pavement type (i.e., HMA-SP (Type A), RHMA-SP-G, HMA-O, RHMA-O, etc.)

Electronic PPF files that do not follow this standardized naming convention will be rejected.
Within 2 business days of performing straightedge measurements, submit areas requiring smoothness correction. Identify locations of smoothness correction by:

1. Location Number
2. District-County-Route
3. Beginning station or post mile to the nearest 0.01 mile
4. For correction areas within a lane:
 4.1. Lane direction as NB, SB, EB, or WB
 4.2. Lane number from left to right in direction of travel
 4.3. Wheel path as "L" for left, "R" for right, or "B" for both
5. For correction areas not within a lane:
 5.1. Identify pavement area (i.e., shoulder, weight station, turnout)
 5.2. Direction and distance from centerline as "L" for left or "R" for right
6. Estimated size of correction area

39-1.01D(13)c Inertial Profiler Calibration and Verification Tests
IP equipment must display a current certification decal with expiration date.

Operate the IP according to the manufacturer's recommendations and AASHTO R57-10 at 1-inch recording intervals.

Notify the Engineer 2 business days before performing IP calibration and verification testing.

Conduct the following IP calibration and verification tests in the Engineer's presence each day before performing inertial profiling:

1. Block test. Verify the height sensor accuracy under AASHTO R57-10, section 5.3.2.3.
2. Bounce test. Verify the combined height sensor and accelerometer accuracy under AASHTO R57-10, section 5.3.2.3.2.
3. DMI test. Calibrate the accuracy of the testing procedure under AASHTO R56-10, section 8.4.
4. Manufacturer's recommended tests.

Conduct cross correlation IP verification test in the Engineer's presence before performing initial profiling. Verify cross correlation IP verification test at least annually. Conduct 5 repeat runs of the IP on an authorized test section. The test section must be on an existing asphalt concrete pavement surface 0.1 mile long. Calculate a cross correlation to determine the repeatability of your device under Section 8.3.1.2 of AASHTO R56-10 using ProVAL profiler certification analysis with a 3 feet maximum offset. The cross correlation must be a minimum of 0.92.

For each 0.1 mile section, your IRI values must be within 10 percent of the Department's IRI values. The Engineer may order you to recalibrate your IP equipment and reprofile. If your results are inaccurate due to operator error, the Engineer may disqualify your IP operator.

39-1.01D(13)d Acceptance Criteria
For areas that require pavement smoothness determined using an IP, the pavement surface must:

1. Have no areas of localized roughness with an IRI greater than 120 in/mi
2. Comply with the MRI requirements shown in the following tables for a 0.1 mile section:

<table>
<thead>
<tr>
<th>HMA thickness</th>
<th>MRI requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0.20 foot</td>
<td>60 in/mi or less</td>
</tr>
<tr>
<td>≤0.20 foot</td>
<td>75 in/mi or less</td>
</tr>
</tbody>
</table>

*Except HMA-O, and RHMA-G
OGFC Pavement Smoothness Acceptance Criteria

<table>
<thead>
<tr>
<th>OGFC placement on</th>
<th>MRI requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>New construction, or HMA</td>
<td>60 in/mi or less</td>
</tr>
<tr>
<td>overlay</td>
<td></td>
</tr>
<tr>
<td>Existing pavement</td>
<td>75 in/mi or less</td>
</tr>
<tr>
<td>Milled surface</td>
<td>75 in/mi or less</td>
</tr>
</tbody>
</table>

For areas that require pavement smoothness determined using a 12-foot straightedge, the HMA pavement surface must not vary from the lower edge of the straightedge by more than:

1. 0.01 foot when the straightedge is laid parallel with the centerline
2. 0.02 foot when the straightedge is laid perpendicular to the centerline and extends from edge to edge of a traffic lane
3. 0.02 foot when the straightedge is laid within 24 feet of a pavement conform

Pavement smoothness may be accepted based on your testing in the absence of the Department's testing.

39-1.01D(13)e Smoothness Measurement
Notify the Engineer of start location by station and start time at least 2 business days before profiling.
Remove foreign objects on the pavement surface before profiling.

39-1.01D(13)f Inertial Profiler
Mark the beginning and ending station on the pavement shoulder before profiling. Stationing must be the same when profiling more than one surface.
While collecting the profile data to determine IRI, record the following locations in the raw profile data:
1. Begin and end of all bridge approach slabs
2. Begin and end of all bridges
3. Begin and end of all culverts visible on the roadway surface

Determine the MRI for 0.1-mile fixed sections using the ProVAL ride quality analysis with a 250 mm filter. Profile the left and right wheel paths of each lane. Calculate the MRI of each lane. A partial section less than 0.1 mile that is the result of an interruption to continuous pavement surface must comply with the MRI specifications for a full section. Adjust the MRI for a partial section to reflect a full section based on the proportion of a section paved.

Determine the areas of localized roughness using a continuous IRI for each wheel path with a 25-foot interval using a 250 mm filter. Localized roughness greater than 120 in/mi must be corrected regardless of the IRI values of a 0.1-mile section.

Determine the MRI of the HMA, except OGFC. If the MRI of the final pavement surface is greater than the MRI acceptance requirement in the table titled "HMA Pavement Smoothness Acceptance Criteria" in section 39-1.01D(13)d, correct to the MRI acceptance requirement in the table.

The final surface of HMA must meet MRI acceptance requirements in the table titled "HMA Pavement Smoothness Acceptance Criteria" in section 39-1.01D(13)d before placing HMA-O or RHMA-O.

Determine the MRI of the HMA-O or RHMA-O. If the HMA-O or RHMA-O MRI is greater than the accepted value in the table titled "OGFC Pavement Smoothness Acceptance Criteria" in section 39-1.01D(13)d, correct to the MRI acceptance requirement in the table.

39-1.01D(13)g Straightedge
Measure areas that require 12-foot straightedge. If the straightedge measurement is greater than the accepted value in section 39-1.01D(13)a, correct to the acceptance requirement.
39-1.01D(13)h Smoothness Correction
If the final surface of the pavement does not comply with section 39-1.01D(13)d, grind the pavement to within specified tolerances, remove and replace it, or place an overlay of HMA. Do not start corrective work until your method is authorized.

Smoothness correction of the final pavement surface must leave at least 75 percent of the specified HMA thickness. If ordered, core the pavement at the locations determined by the Engineer. Coring, including traffic control, is change order work. Remove and replace deficient pavement areas where the overlay thickness is less than 75 percent of the thickness specified as determined by the Engineer.

If you choose to correct HMA-O or RHMA-O, the Engineer determines if the corrective method causes raveling. HMA-O or RHMA-O that is raveling must be removed and replaced.

Corrected HMA pavement areas must be uniform rectangles with edges:
1. Parallel to the nearest HMA pavement edge or lane line
2. Perpendicular to the pavement centerline

On ground areas not to be overlaid with HMA-O or RHMA-O, apply fog seal coat under section 37-2.

Where corrections are made within areas requiring testing with IP, reprofile the entire lane length with the IP device.

Where corrections are made within areas requiring testing with a 12-foot straightedge, retest the corrected area with the straightedge.

39-1.01D(13)i Prepaving Inertial Profiler
Section 39-1.01D(13)i applies to existing asphalt concrete areas receiving an HMA overlay. Comply with section 39-1.01D(13)a –39-1.01D(13)c and 39-1.01D(13)e.

Before starting paving operations, perform prepaving IP measurements. Prepaving IP includes taking profiles of the existing pavement, analyzing the data with ProVAL to determine existing pavement IRI, MRI, and areas of localized roughness.

Identify areas of localized roughness greater than 140 in/mi.

39-1.01D(13)j Prepaving Grinding
Section 39-1.01D(13)j applies to existing asphalt concrete areas receiving an HMA overlay of less than or equal to 0.20 foot.

Correct areas of localized roughness greater than 140 in/mi.

Prepaving grinding day includes correcting areas of localized roughness, taking profiles of the corrected areas, and submitting profile data as specified in section 39-1.01D(13)b.

Notify the Engineer of those areas of localized roughness that cannot be corrected by prepaving grinding. The Engineer responds to your notification within 5 business days.

For those areas of localized roughness that cannot be corrected by grinding, the Engineer may order you to either (1) not correct the areas of localized roughness or (2) correct areas of localized roughness by a different method and take profiles of the corrected areas with an IP.

Corrective work not performed by prepaving grinding, including taking profiles of the corrected areas and associated traffic control, is change order work.

Correct prepaving areas of localized roughness that you predict will cause the final surface of HMA pavement to be noncompliant with the smoothness specifications. After correcting prepaving areas of localized roughness, take profiles of the corrected area and submit profile data as specified in section 39-1.01D(13)b.

Dispose of grinding residue.

Pave within 7 days of correcting areas.
The final pavement surface must comply with section 39-1.01D(13)d.

If ordered not to correct areas of localized roughness, the smoothness specifications do not apply to the final pavement surface placed in those areas.

39-1.01D(14) Density Cores

Take 4-inch or 6-inch density cores to determine percent of theoretical maximum density. Take a minimum of 2 density cores each paving day from random locations you select. Backfill and compact holes with authorized material.

39-1.01D(15) Data Cores

Data core summary and data core digital photographs are required to document the pavement structural section. Take data cores that include the completed HMA pavement, underlying base, and subbase material. Protect data cores and surrounding pavement from damage.

Take 4-inch or 6-inch diameter data cores:

1. At the beginning, end, and every 1/2 mile within the paving limits of each route on the project
2. After all paving is complete
3. From the center of the specified lane

On a 2-lane roadway, take data cores from either lane. On a 4-lane roadway, take data cores from each direction in the outermost lane. On a roadway with more than 4 lanes, take data cores from the median lane and the outermost lane in each direction. After coring, backfill and compact core holes with authorized material.

Each core must include the stabilized materials encountered. You may choose not to recover unstabilized material but you must identify the material. Unstabilized material includes:

1. Granular material
2. Crumbled or cracked stabilized material
3. Sandy or clayey soil

Prepare a summary for each data core, the summary must include:

1. Project identification number
2. Date cored
3. Core identification number
4. Type of materials recovered
5. Type and approximate thickness of unstabilized material not recovered
6. Total core thickness
7. Thickness of each individual material to within:
 7.1. For recovered material, 1/2 inch
 7.2. For unstabilized material, 1.0 inch
8. Location including:
 8.1. County
 8.2. Route
 8.3. Post mile
 8.4. Lane number
 8.5. Lane direction
 8.6. Station

Each data core digital photograph must include a ruler laid next to the data core. Each photograph must include:

1. The core
2. Project identification number
3. Core identification number
4. Date cored
5. County
6. Route
7. Post mile
8. Lane number
9. Lane direction

After data core summary and photograph submittal, dispose of cores.

39-1.01D(16) Engineer's Acceptance

The Engineer samples materials for testing under California Test 125 and tests under the applicable test method except samples may only be taken from one of the following:

1. Plant, a truck, or automatic sampling device
2. Mat behind the paver

The Engineer's sampling and testing is independent of your QC sampling and testing, statistically-based, and random.

If you request, the Engineer splits samples and provides you with a part.

The Engineer prepares 3 briquettes for air voids content and VMA determination. The Engineer reports the average of 3 tests.

The Engineer accepts HMA based on:

1. Accepted JMF
2. Authorized QC plan
3. Visual inspection
4. Compliance quality characteristics of the following 4 tables:
HMA Aggregate Acceptance

<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>HMA-SP (Type A)</th>
<th>RHMA-SP-G</th>
<th>OGFC</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate gradation(^a, b)</td>
<td>AASHTO T 27</td>
<td>JMF ± Tolerance(^c)</td>
<td>JMF ± Tolerance(^c)</td>
<td>JMF ± Tolerance(^c)</td>
<td>JMF ± Tolerance(^c)</td>
</tr>
</tbody>
</table>
| Sieve | 1" | 3/4" | 1/2" | 3/8" | JMF \(\pm\) Tolerance
| 3/4" | X | | | | | |
| 1/2" | -- | X | -- | -- |
| 3/8" | X | -- | X | -- |
| No. 4 | -- | -- | X | |
| No. 8 | X | X | X | X |
| No. 200 | X | X | X | X |
| Sand equivalent (min.)\(^d\) | AASHTO T 176 | 47 | 47 | -- | 47 |
| Percent of theoretical maximum density (%) | | California Test 375 | 92–97 | 92–97 | -- | 91–96 |
| Percent of crushed particles | | AASHTO T 335 | 95 | -- | 90 | 95 |
| Coarse aggregate (% min.) | | | 90 | 90 | 90 | 90 |
| One fractured face | | | | | | |
| Two fractured faces | | | | | | |
| Fine aggregate (% min.) | | | | | | |
| (Passing No. 4 sieve and retained on No. 8 sieve.) | | | | | | |
| One fractured face | | | | | | |
| Los Angeles Rattler (% max.) | | AASHTO T 96 | 12 | 12 | 12 | 12 |
| Loss at 100 rev. | | | 40 | 40 | 40 | 40 |
| Loss at 500 rev. | | | | | | |
| Fine aggregate angularity (% min.) | | AASHTO T 304 Method A | 45 | 45 | -- | 45 |
| Flat and elongated particles (% max. by weight @ 5:1) | | ASTM D 4791 | Report only | Report only | Report only | 10 |

\(^a\)The Engineer determines combined aggregate gradations containing RAP under Laboratory Procedure LP-9.

\(^b\)"X" denotes the sieves the Engineer considers for the specified aggregate gradation.

\(^c\)The tolerances must comply with the allowable tolerances in section 39-1.02E.

\(^d\)The Engineer reports the average of 3 tests from a single split sample.
<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>HMA-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Type A</td>
</tr>
<tr>
<td>Asphalt binder content (%)</td>
<td>AASHTO T 308 Method A</td>
<td>JMF - 0.3, +0.5</td>
</tr>
<tr>
<td>HMA moisture content (% max.)</td>
<td>AASHTO T 329</td>
<td>1.0</td>
</tr>
</tbody>
</table>
| **Air voids content** (%)
 a, b | AASHTO T 269 | 4 ± 1.5 | Specification ± 1.5 | -- | 5 ± 1.5 |
| **Voids filled with asphalt** (%)
 1/4" grading
 3/8" grading
 1/2" grading
 3/4" grading
 1" grading | SP-2 Asphalt Mixtures Volumetrics^c | 65.0–75.0
 65.0–75.0
 65.0–75.0
 65.0–75.0 | Report only | -- | 60–70 |
| **Voids in mineral aggregate** (% min.)
 1/4" grading
 3/8" grading
 1/2" grading
 3/4" grading
 1" grading | SP-2 Asphalt Mixtures Volumetrics^c | 16.5
 14.5
 13.5
 12.5 | 18.0–23.0
 18.0–23.0
 13.5 | 60–70 |
| **Dust proportion**
 1/4" and 3/8" gradings
 1/2" and 3/4" gradings
 1" grading | SP-2 Asphalt Mixtures Volumetrics^c | 0.9–2.0
 0.6–1.3 | Report only | -- | 0.6–1.3 |
| **Percent of theoretical maximum density**
 (%)
 a, b, c | California Test 375 | 92–97 | 92–97 | -- | 91–96 |

^a The Engineer reports the average of 3 tests from a single split sample.
^b The Engineer determines the bulk specific gravity of each lab-compacted briquette under AASHTO T 275, and theoretical maximum specific gravity under AASHTO T 209, Method A.
^c Determine bulk specific gravity using AASHTO T 275.
^d The Engineer determines percent of theoretical maximum density if any of the following:
1. 1/2-inch, 3/8-inch, or 1/4-inch grading is used and the specified total paved thickness is at least 0.15 foot.
2. 1 inch, and 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot.
^e The Engineer determines percent of theoretical maximum density under California Test 375 except the Engineer uses:
1. AASHTO T 275 to determine in-place density of each density core instead of using the nuclear gauge in Part 4, "Determining In-Place Density By The Nuclear Density Device."
2. AASHTO T 209 Method A to determine theoretical maximum density instead of calculating test maximum density in Part 5, "Determining Test Maximum Density."
^f The Engineer determines theoretical maximum density (AASHTO T 209 Method A) at the frequency specified for Test Maximum Density under California Test 375, Part 5. D.
HMA Acceptance In Place

<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>HMA-SP Type A</th>
<th>RHMA-SP-G</th>
<th>OGFC</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamburg wheel track (minimum number of</td>
<td>AASHTO T 324</td>
<td>10,000</td>
<td>15,000</td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td>passes at 0.5 inch average rut depth)</td>
<td>(Modified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG 58</td>
<td></td>
<td>15,000</td>
<td>20,000</td>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td>PG 64</td>
<td></td>
<td>20,000</td>
<td>25,000</td>
<td></td>
<td>20,000</td>
</tr>
<tr>
<td>PG-70</td>
<td></td>
<td>25,000</td>
<td>--</td>
<td></td>
<td>25,000</td>
</tr>
<tr>
<td>PG-76 or higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamburg wheel track (inflection point</td>
<td>AASHTO T 324</td>
<td>10,000</td>
<td></td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td>minimum number of passes)</td>
<td>(Modified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG 58</td>
<td></td>
<td>10,000</td>
<td></td>
<td></td>
<td>10,000</td>
</tr>
<tr>
<td>PG 64</td>
<td></td>
<td>12,500</td>
<td></td>
<td></td>
<td>12,500</td>
</tr>
<tr>
<td>PG-70</td>
<td></td>
<td>15,000</td>
<td></td>
<td></td>
<td>15,000</td>
</tr>
<tr>
<td>PG-76 or higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture susceptibility (minimum dry strength,</td>
<td>AASHTO T 283</td>
<td>120</td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>psi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture susceptibility (tensile strength ratio,</td>
<td>AASHTO T 283</td>
<td>70</td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Test as specified in section 39-1.01D(1).

-Freeze thaw required.

Miscellaneous Quality HMA Acceptance

<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>HMA-SP Type A</th>
<th>RHMA-SP-G</th>
<th>OGFC</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothness</td>
<td>California Test 526</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt rubber binder viscosity @ 375 °F</td>
<td>LP-11</td>
<td>--</td>
<td>1,500–4,000</td>
<td>1,500–4,000</td>
<td>--</td>
</tr>
<tr>
<td>(centipoises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt modifier</td>
<td>ASTM D 445 ASTM D 92</td>
<td>--</td>
<td>Section 39-1.02D(2)(b)</td>
<td>Section 39-1.02D(2)(b)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>ASTM D 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crumb rubber modifier</td>
<td>LP-10 CT 208 ASTM D</td>
<td>--</td>
<td>Section 39-1.02D(2)(c)</td>
<td>Section 39-1.02D(2)(c)</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>297</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No single test result may represent more than the smaller of 750 tons or 1 day's production.

For any single quality characteristic except smoothness, if 2 acceptance test results for 1 day's production do not comply with the specifications:
1. Stop production.
2. Take corrective action.
3. In the Engineer's presence, take samples and split each sample into 4 parts. Test 1 part for compliance with the specifications and submit 3 parts to the Engineer. The Engineer tests 1 part for compliance with the specifications and reserves and stores 2 parts.
4. Demonstrate compliance with the specifications before resuming production and placement on the State highway.

The Engineer tests the density core you take from each 250 tons of HMA-SP (Type A), HMA-SP (Type C) and RHMA-SP-G production. The Engineer determines the percent of theoretical maximum density for each density core by determining the density core's density and dividing by the theoretical maximum density.

The Engineer determines the percent of theoretical maximum density from density cores taken from the final layer measured the full depth of the total paved HMA-SP (Type A), HMA-SP (Type C) and RHMA-SP-G thickness if any of the following applies:

1. If 1/2-inch, 3/8-inch, or 1/4-inch aggregate grading is used and the specified total paved thickness is at least 0.15 foot and any layer is less than 0.15 foot.
2. If 1 inch, or 3/4-inch aggregate grading is used and the specified total paved thickness is at least 0.20 foot and any layer is less than 0.20 foot.

If the percent of theoretical maximum density does not comply with the specifications, the Engineer may accept the HMA-SP (Type A), HMA-SP (Type C) and RHMA-SP-G and the Department deducts payment based on the factors shown in the following tables:

<table>
<thead>
<tr>
<th>Reduced Payment Factors for Percent of Theoretical Maximum Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA-SP (Type A) and RHMA-SP-G Percent of Theoretical maximum density</td>
</tr>
<tr>
<td>92.0</td>
</tr>
<tr>
<td>91.9</td>
</tr>
<tr>
<td>91.8</td>
</tr>
<tr>
<td>91.7</td>
</tr>
<tr>
<td>91.6</td>
</tr>
<tr>
<td>91.5</td>
</tr>
<tr>
<td>91.4</td>
</tr>
<tr>
<td>91.3</td>
</tr>
<tr>
<td>91.2</td>
</tr>
<tr>
<td>91.1</td>
</tr>
<tr>
<td>91.0</td>
</tr>
<tr>
<td>90.9</td>
</tr>
<tr>
<td>90.8</td>
</tr>
<tr>
<td>90.7</td>
</tr>
<tr>
<td>90.6</td>
</tr>
<tr>
<td>90.5</td>
</tr>
<tr>
<td>90.4</td>
</tr>
<tr>
<td>90.3</td>
</tr>
<tr>
<td>90.2</td>
</tr>
<tr>
<td>90.1</td>
</tr>
<tr>
<td>90.0</td>
</tr>
<tr>
<td>< 90.0</td>
</tr>
</tbody>
</table>
Reduced Payment Factors for Percent of Theoretical Maximum Density

<table>
<thead>
<tr>
<th>HMA-SP (Type C) Percent of Theoretical maximum density</th>
<th>Reduced Payment Factor</th>
<th>HMA-SP (Type C) Percent of Theoretical maximum density</th>
<th>Reduced Payment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.0</td>
<td>0.0000</td>
<td>96.0</td>
<td>0.0000</td>
</tr>
<tr>
<td>90.9</td>
<td>0.0125</td>
<td>96.1</td>
<td>0.0125</td>
</tr>
<tr>
<td>90.8</td>
<td>0.0250</td>
<td>96.2</td>
<td>0.0250</td>
</tr>
<tr>
<td>90.7</td>
<td>0.0375</td>
<td>96.3</td>
<td>0.0375</td>
</tr>
<tr>
<td>90.6</td>
<td>0.0500</td>
<td>96.4</td>
<td>0.0500</td>
</tr>
<tr>
<td>90.5</td>
<td>0.0625</td>
<td>96.5</td>
<td>0.0625</td>
</tr>
<tr>
<td>90.4</td>
<td>0.0750</td>
<td>96.6</td>
<td>0.0750</td>
</tr>
<tr>
<td>90.3</td>
<td>0.0875</td>
<td>96.7</td>
<td>0.0875</td>
</tr>
<tr>
<td>90.2</td>
<td>0.1000</td>
<td>96.8</td>
<td>0.1000</td>
</tr>
<tr>
<td>90.1</td>
<td>0.1125</td>
<td>96.9</td>
<td>0.1125</td>
</tr>
<tr>
<td>90.0</td>
<td>0.1250</td>
<td>97.0</td>
<td>0.1250</td>
</tr>
<tr>
<td>89.9</td>
<td>0.1375</td>
<td>97.1</td>
<td>0.1375</td>
</tr>
<tr>
<td>89.8</td>
<td>0.1500</td>
<td>97.2</td>
<td>0.1500</td>
</tr>
<tr>
<td>89.7</td>
<td>0.1625</td>
<td>97.3</td>
<td>0.1625</td>
</tr>
<tr>
<td>89.6</td>
<td>0.1750</td>
<td>97.4</td>
<td>0.1750</td>
</tr>
<tr>
<td>89.5</td>
<td>0.1875</td>
<td>97.5</td>
<td>0.1875</td>
</tr>
<tr>
<td>89.4</td>
<td>0.2000</td>
<td>97.6</td>
<td>0.2000</td>
</tr>
<tr>
<td>89.3</td>
<td>0.2125</td>
<td>97.7</td>
<td>0.2125</td>
</tr>
<tr>
<td>89.2</td>
<td>0.2250</td>
<td>97.8</td>
<td>0.2250</td>
</tr>
<tr>
<td>89.1</td>
<td>0.2375</td>
<td>97.9</td>
<td>0.2375</td>
</tr>
<tr>
<td>89.0</td>
<td>0.2500</td>
<td>98.0</td>
<td>0.2500</td>
</tr>
<tr>
<td>< 89.0 Remove and Replace</td>
<td></td>
<td>> 98.0 Remove and Replace</td>
<td></td>
</tr>
</tbody>
</table>

39-1.01D(17) Dispute Resolution

You and the Engineer must work together to avoid potential conflicts and to resolve disputes regarding test result discrepancies. Notify the Engineer within 5 business days of receiving a test result if you dispute the test result.

If you or the Engineer dispute each other's test results, submit quality control test results and copies of paperwork including worksheets used to determine the disputed test results. An independent third party (ITP) performs referee testing. Before the ITP participates in a dispute resolution, the ITP must be qualified under AASHTO Materials Reference Laboratory program (AMRL), and the Department's Independent Assurance Program. The ITP must be independent of the project. By mutual agreement, the ITP is chosen from:

1. A Department laboratory
2. A Department laboratory in a district or region not in the district or region the project is located
3. The Transportation Laboratory
4. A laboratory not currently employed by you or your HMA producer

If split QC or acceptance samples are not available, the ITP uses any available material representing the disputed HMA for evaluation.

39-1.02 MATERIALS

39-1.02A General

Use RAP aggregate for HMA-SP (Type A), and HMA-SP (Type C) as part of the virgin aggregate in a quantity equal to 25.0 ± 1.0 percent of the aggregate blend.
Do not use RAP aggregate for RHMA-SP-G and OGFC

Treat aggregate for OGFC aggregate with the same antistrip treatment used for HMA.

For miscellaneous areas and dikes:

1. Choose the 3/8-inch or 1/2-inch HMA-SP (Type A) and aggregate gradations.
2. Minimum asphalt binder content must be 6.8 percent for 3/8-inch aggregate and 6.0 percent for 1/2-inch aggregate. If you request and the Engineer authorizes, you may reduce the minimum asphalt binder content.
3. Choose asphalt binder Grade PG 70-10 or use the same grade specified for HMA-SP.

39-1.02B Geosynthetic Pavement Interlayer

Geosynthetic pavement interlayer must comply with section 88 for paving fabric or paving mat.

39-1.02C Tack Coat

Tack coat must comply with the specifications for asphaltic emulsion or asphalt binder. Choose the type and grade.

Notify the Engineer if you dilute asphaltic emulsion with water. The weight ratio of added water to asphaltic emulsion must not exceed 1 to 1.

Measure added water either by weight or volume under section 9-1.02 or you may use water meters from water districts, cities, or counties. If you measure water by volume, apply a conversion factor to determine the correct weight.

With each dilution, submit:

1. Weight ratio of water to bituminous material in the original asphaltic emulsion
2. Weight of asphaltic emulsion before diluting
3. Weight of added water
4. Final dilution weight ratio of water to asphaltic emulsion

39-1.02D Asphalt Binder

39-1.02D(1) General

Asphalt binder in HMA must comply with section 92.

For HMA-SP (Type A), the grade of binder must be _____.
For HMA-SP (Type C), the grade of binder must be _____.
For RHMA-SP-G, the grade of asphalt binder must be _____.
For HMA-O, the grade of asphalt binder must be __.
For RHMA-O, the grade of asphalt binder must be __.
Asphalt binder for geosynthetic pavement interlayer must comply with section 92. Choose from Grades PG 64-10, PG 64-16, or PG 70-10.
LAS-treated asphalt binder must comply with the specifications for asphalt binder. Do not use LAS as a substitute for asphalt binder.

39-1.02D(2) Asphalt Rubber Binder

39-1.02D(2)(a) General

Use asphalt rubber binder in RHMA-SP-G, and RHMA-O. Asphalt rubber binder must be a combination of:

1. Asphalt binder
2. Asphalt modifier
3. CRM
The combined asphalt binder and asphalt modifier must be 80.0 ± 2.0 percent by weight of the asphalt rubber binder.

Determine the amount of asphalt rubber binder to be mixed with the aggregate for RHMA-SP-G as follows:

1. Base the calculations on the average of 3 briquettes produced at each asphalt rubber binder content.
2. Plot asphalt rubber binder content versus average air voids content for each set of three specimens and connect adjacent points with a best-fit curve.
3. Calculate voids in mineral aggregate (VMA) and voids filled with asphalt (VFA) for each specimen, average each set, and plot the average versus asphalt rubber binder content.
4. Calculate the dust proportion and plot versus asphalt rubber binder content.
5. From the curve plotted in Step 2, select the theoretical asphalt rubber binder content that has ___ percent air voids.
6. At the selected asphalt rubber binder content, evaluate corresponding voids in mineral aggregate, voids filled with asphalt, and dust proportion to verify compliance with requirements. If necessary, develop an alternate composite aggregate gradation to conform to the RHMA-SP-G requirements.
7. Record the asphalt rubber binder content in Step 5 as the Optimum Bitumen Content (OBC).
8. To establish a recommended range, use the OBC as the high value and 0.2 percent less as the low value. The recommended range must not extend below 7.5 percent by total weight of the mix. If the OBC is 7.5 percent, then there is no recommended range, and 7.5 percent is the recommended value.

Laboratory mixing and compaction must comply with AASHTO R 35, except the mixing temperature of the aggregate must be between 300 degrees F and 325 degrees F. The mixing temperature of the asphalt-rubber binder must be between 375 degrees F and 425 degrees F. The compaction temperature of the combined mixture must be between 290 degrees F and 320 degrees F.

39-1.02D(2)(b) Asphalt Modifier

Asphalt modifier must be a resinous, high flash point, and aromatic hydrocarbon, and comply with:

<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity, m²/s (x 10⁶) at 100 °C</td>
<td>ASTM D 445</td>
<td>X ± 3a</td>
</tr>
<tr>
<td>Flash Point, CL.O.C., °C</td>
<td>ASTM D 92</td>
<td>207 minimum</td>
</tr>
</tbody>
</table>

Molecular Analysis

<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltenes, percent by mass</td>
<td>ASTM D 2007</td>
<td>0.1 maximum</td>
</tr>
<tr>
<td>Aromatics, percent by mass</td>
<td>ASTM D 2007</td>
<td>55 minimum</td>
</tr>
</tbody>
</table>

The symbol "X" is the proposed asphalt modifier viscosity. "X" must be between 19 and 36. A change in "X" requires a new asphalt rubber binder design.

Asphalt modifier must be from 2.0 percent to 6.0 percent by weight of the asphalt binder in the asphalt rubber binder.

39-1.02D(2)(c) Crumb Rubber Modifier

CRM must consist of a ground or granulated combination of scrap tire CRM and high natural CRM. CRM must be 75.0 ± 2.0 percent scrap tire CRM and 25.0 ± 2.0 percent high natural CRM by total weight of CRM. Scrap tire CRM must be from any combination of automobile tires, truck tires, or tire buffings.

Sample and test scrap tire CRM and high natural CRM separately. CRM must comply with:
Crumb Rubber Modifier for Asphalt Rubber Binder

<table>
<thead>
<tr>
<th>Quality characteristic</th>
<th>Test method</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrap tire CRM gradation (% passing No. 8 sieve)</td>
<td>LP-10</td>
<td>100</td>
</tr>
<tr>
<td>High natural CRM gradation (% passing No. 10 sieve)</td>
<td>LP-10</td>
<td>100</td>
</tr>
<tr>
<td>Wire in CRM (% max.)</td>
<td>LP-10</td>
<td>0.01</td>
</tr>
<tr>
<td>Fabric in CRM (% max.)</td>
<td>LP-10</td>
<td>0.05</td>
</tr>
<tr>
<td>CRM particle length (inch max.)^a</td>
<td>--</td>
<td>3/16</td>
</tr>
<tr>
<td>CRM specific gravity^a</td>
<td>California Test 208</td>
<td>1.1 – 1.2</td>
</tr>
<tr>
<td>Natural rubber content in high natural CRM (%)^a</td>
<td>ASTM D 297</td>
<td>40.0 – 48.0</td>
</tr>
</tbody>
</table>

^aTest at mix design and for Certificate of Compliance.

Only use CRM ground and granulated at ambient temperature. If steel and fiber are cryogenically separated, it must occur before grinding and granulating. Only use cryogenically produced CRM particles that can be ground or granulated and not pass through the grinder or granulator.

CRM must be dry, free-flowing particles that do not stick together. CRM must not cause foaming when combined with the asphalt binder and asphalt modifier. You may add calcium carbonate or talc up to 3 percent by weight of CRM.

39-1.02E Aggregate
Aggregate must be clean and free from deleterious substances.

Gradations are based on nominal maximum aggregate size (NMAS).

The aggregate for HMA-SP (Type A) must comply with the __________ grading.

The aggregate for HMA-SP (Type C) must comply with the __________ grading.

The aggregate for RHMA-SP-G must comply with the __________ grading.

The aggregate for HMA-O must comply with the __________ grading.

The aggregate for RHMA-O must comply with the __________ grading.

Aggregate gradation must be within the TV limits for the specified sieve size shown in the following tables:
Aggregate Gradation (Percentage Passing)
HMA-SP (Type A)

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>3/4"</td>
<td>90–98</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>1/2"</td>
<td>70–90</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>No. 4</td>
<td>42–58</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 8</td>
<td>29–43</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 30</td>
<td>10–23</td>
<td>TV ± 4</td>
</tr>
<tr>
<td>No. 200</td>
<td>2–7</td>
<td>TV ± 2</td>
</tr>
</tbody>
</table>

1/2-inch HMA-SP (Type A)

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>1/2"</td>
<td>95–98</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>3/8"</td>
<td>72–95</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 4</td>
<td>52–69</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 8</td>
<td>35–55</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 30</td>
<td>15–30</td>
<td>TV ± 4</td>
</tr>
<tr>
<td>No. 200</td>
<td>2–8</td>
<td>TV ± 2</td>
</tr>
</tbody>
</table>

3/8-inch HMA-SP (Type A)

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>3/8"</td>
<td>95–98</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 4</td>
<td>55–75</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 8</td>
<td>30–50</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 30</td>
<td>15–35</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 200</td>
<td>2–9</td>
<td>TV ± 2</td>
</tr>
</tbody>
</table>

1/4-inch HMA-SP (Type A)

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8"</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>No. 4</td>
<td>95–98</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 8</td>
<td>70–80</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>No. 30</td>
<td>34–45</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 200</td>
<td>2–12</td>
<td>TV ± 4</td>
</tr>
</tbody>
</table>

Aggregate Gradation (Percentage Passing)
HMA-SP (Type C)

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>3/4"</td>
<td>88–93</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>1/2"</td>
<td>72–85</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>3/8"</td>
<td>55–70</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>No. 4</td>
<td>35–52</td>
<td>TV ± 7</td>
</tr>
<tr>
<td>No. 8</td>
<td>22–40</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 30</td>
<td>8–24</td>
<td>TV ± 4</td>
</tr>
<tr>
<td>No. 200</td>
<td>3–7</td>
<td>TV ± 2</td>
</tr>
</tbody>
</table>
Rubberized Hot Mix Asphalt - Gap Graded (RHMA-SP-G)

3/4-inch RHMA-SP-G

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>100</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>3/4"</td>
<td>95–98</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>1/2"</td>
<td>83–87</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>3/8"</td>
<td>65–70</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 4</td>
<td>28–42</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>No. 8</td>
<td>14–22</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 200</td>
<td>0–6</td>
<td>TV ± 2</td>
</tr>
</tbody>
</table>

1/2-inch RHMA-SP-G

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>1/2"</td>
<td>90–98</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>3/8"</td>
<td>83–87</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 4</td>
<td>28–42</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>No. 8</td>
<td>14–22</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 200</td>
<td>0–6</td>
<td>TV ± 2</td>
</tr>
</tbody>
</table>

Open Graded Friction Course (OGFC)

1-inch OGFC

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2"</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>1"</td>
<td>99–100</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>3/4"</td>
<td>85–96</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>1/2"</td>
<td>55–71</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>No. 4</td>
<td>10–25</td>
<td>TV ± 7</td>
</tr>
<tr>
<td>No. 8</td>
<td>6–16</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 200</td>
<td>1–6</td>
<td>TV ± 2</td>
</tr>
</tbody>
</table>

1/2-inch OGFC

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>1/2"</td>
<td>95–100</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>3/8"</td>
<td>78–89</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>No. 4</td>
<td>28–37</td>
<td>TV ± 7</td>
</tr>
<tr>
<td>No. 8</td>
<td>7–18</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 30</td>
<td>0–10</td>
<td>TV ± 4</td>
</tr>
<tr>
<td>No. 200</td>
<td>0–3</td>
<td>TV ± 2</td>
</tr>
</tbody>
</table>

3/8-inch OGFC

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Target Value Limits</th>
<th>Allowable Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>3/8"</td>
<td>90–100</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>No. 4</td>
<td>29–36</td>
<td>TV ± 7</td>
</tr>
<tr>
<td>No. 8</td>
<td>7–18</td>
<td>TV ± 6</td>
</tr>
<tr>
<td>No. 30</td>
<td>0–10</td>
<td>TV ± 5</td>
</tr>
<tr>
<td>No. 200</td>
<td>0–3</td>
<td>TV ± 2</td>
</tr>
</tbody>
</table>

Aggregate gradation must be before the addition of asphalt binder and must include supplemental fines. The Engineer tests for aggregate grading under AASHTO T 27, note 4, and AASHTO T 11 do not apply.
Use a mechanical sieve shaker. Aggregate shaking time must not exceed 10 minutes for both course and fine aggregate portions.

Choose a sieve size TV within each target value limits shown in the tables titled "Aggregate Gradation."

Before the addition of asphalt binder and lime treatment, aggregate must comply with:

<table>
<thead>
<tr>
<th>Aggregate Quality</th>
<th>Test method</th>
<th>HMA-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality characteristic</td>
<td>Type A</td>
<td>RHMA-G-SP</td>
</tr>
<tr>
<td>Percent of crushed particles</td>
<td>AASHTO T 335</td>
<td></td>
</tr>
<tr>
<td>Coarse aggregate (% min.)</td>
<td>95</td>
<td>--</td>
</tr>
<tr>
<td>One fractured face</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Two fractured faces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine aggregate (% min.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Passing No. 4 sieve and retained on No. 8 sieve.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One fractured face</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Los Angeles Rattler (% max.)</td>
<td>AASHTO T 96</td>
<td></td>
</tr>
<tr>
<td>Loss at 100 Rev.</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Loss at 500 Rev.</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Sand equivalent (min.)</td>
<td>AASHTO T 176</td>
<td></td>
</tr>
<tr>
<td>a, b</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Fine aggregate angularity (% min.)</td>
<td>AASHTO T 304 Method A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Flat and elongated particles (% max. by weight @ 5:1)</td>
<td>ASTM D 4791</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Reported value must be the average of 3 tests from a single sample.

Use of a Sand Reader Indicator is required as shown in AASHTO T 176, Figure 1. Sections 4.7, 4.8, 7.1.2, 8.4.2 and 8.4.3 do not apply

39-1.02F Reclaimed Asphalt Pavement
For HMA-SP (Type A), and HMA-SP (Type C) substitute RAP aggregate for part of the virgin aggregate in a quantity equal to 25.0 ± 1.0 percent of the aggregate blend

Provide enough space for meeting all RAP handling requirements at your facility. Provide a clean, graded base, well drained area for stockpiles.

If RAP is from multiple sources blend the RAP thoroughly and completely before fractionating. Fractionate RAP into 2 sizes, a coarse fraction RAP retained on 1/4-inch screen, and a fine fraction RAP passing 1/4-inch screen.

Isolate the processed RAP stockpiles from other materials. Store processed RAP in conical or longitudinal stockpiles. Processed RAP must not be agglomerated or be allowed to congeal in large stockpiles.

39-1.02G Liquid Antistrip
LAS total amine value must be 325 minimum when tested under ASTM D 2074.

Use only 1 LAS type or brand at a time. Do not mix LAS types or brands.

Store and mix LAS under the manufacturer's instruction.

39-1.02H Lime
Lime for treating aggregate must be high-calcium hydrated lime and comply with section 24-2.02B.

39-1.02I Water
Water for lime treated aggregate must comply with section 24-2.02C.
39-1.02J Hot Mix Asphalt Production
39-1.02J(1) General
Produce HMA in a batch mixing plant or a continuous mixing plant.

HMA plants must be Department-qualified. Before production, the HMA plant must have a current qualification under the Department's Materials Plant Quality Program.

Proportion aggregate by hot or cold feed control. During production, you may adjust hot or cold feed proportion controls for virgin aggregate and RAP.

HMA-SP (Type A), and HMA-SP (Type C) must have 25 ± 4 percent RAP.

39-1.02J(2) Mixing
Mix HMA ingredients into a homogeneous mixture of coated aggregates.

Asphalt binder must be from 275 to 375 degrees F when mixed with aggregate.

Asphalt rubber binder must be from 375 to 425 degrees F when mixed with aggregate.

When mixed with asphalt binder, aggregate must not be more than 325 degrees F except aggregate for OGFC with unmodified asphalt binder must be not more than 275 degrees F. Aggregate temperature specifications do not apply to RAP.

HMA must not be more than 325 degrees F.

39-1.02J(3) Asphalt Rubber Binder
Deliver scrap tire CRM and high natural CRM in separate bags.

Either proportion and mix asphalt binder, asphalt modifier, and CRM simultaneously or premix the asphalt binder and asphalt modifier before adding CRM. If you premix asphalt binder and asphalt modifier, mix them for at least 20 minutes. When you add CRM, the asphalt binder and asphalt modifier must be from 375 to 440 degrees F.

Do not use asphalt rubber binder during the first 45 minutes of the reaction period. During this period, the asphalt rubber binder mixture must be between 375 degrees F and the lower of 425 or 25 degrees F below the asphalt binder's flash point indicated in the MSDS.

If any asphalt rubber binder is not used within 4 hours after the reaction period, discontinue heating. If the asphalt rubber binder drops below 375 degrees F, reheat before use. If you add more scrap tire CRM to the reheated asphalt rubber binder, the binder must undergo a 45-minute reaction period. The added scrap tire CRM must not exceed 10 percent of the total asphalt rubber binder weight. Reheated and reacted asphalt rubber binder must comply with the viscosity specifications for asphalt rubber binder in section 39-1.02D(2). Do not reheat asphalt rubber binder more than twice.

39-1.02J(4) Liquid Antistrip Treatment
Perform liquid antistrip treatment (LAS) when the HMA mix design determines LAS treatment of HMA is required. LAS must be from 0.5 to 1.0 percent by weight of asphalt binder.

If 3 consecutive sets of recorded production data show actual delivered LAS weight is more than ±1 percent of the authorized mix design LAS weight, stop production and take corrective action.

If a set of recorded production data shows actual delivered LAS weight is more than ±2 percent of the authorized mix design LAS weight, stop production. If the LAS weight exceeds 1.2 percent of the asphalt binder weight, do not use the HMA represented by that data.

The continuous mixing plant controller proportioning the HMA must produce a production data log. The log consists of a series of data sets captured at 10-minute intervals throughout daily production. The data must be a production activity register and not a summation. The material represented by the data is the quantity produced 5 minutes before and 5 minutes after the capture time. For the duration of the Contract, collected data must be stored by the plant controller or a computer's memory at the plant.

The Engineer orders proportioning operations stopped for any of the following if you:
1. Do not submit data
2. Submit incomplete, untimely, or incorrectly formatted data
3. Do not take corrective actions
4. Take late or unsuccessful corrective actions
5. Do not stop production when proportioning tolerances are exceeded
6. Use malfunctioning or failed proportioning devices

If you stop production, notify the Engineer of any corrective actions taken before resuming.

39-1.02J(5) Aggregate Lime Treatment

Perform aggregate lime treatment when the HMA mix design determines aggregate lime treatment is required. Notify the Engineer at least 24 hours before the start of aggregate treatment.

Do not treat RAP.

For aggregate dry lime treatment, marinate aggregate if the plasticity index determined under California Test 204 is from 4 to 10.

For lime slurry aggregate treatment, treat aggregate separate from HMA production, stockpile and marinate the aggregate.

If marination is required:

1. Treat and marinate coarse and fine aggregates separately.
2. Treat the aggregate and stockpile for marination only once.
3. Treat the aggregate separate from HMA production.

The lime ratio is the pounds of dry hydrated lime per 100 lbs. of dry virgin aggregate expressed as a percentage. Water content of slurry or untreated aggregate must not affect the lime ratio.

Aggregate gradations must have the lime ratio ranges shown in the following table:

<table>
<thead>
<tr>
<th>Aggregate gradation</th>
<th>Lime ratio percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse</td>
<td>0.4–1.0</td>
</tr>
<tr>
<td>Fine</td>
<td>1.5–2.0</td>
</tr>
<tr>
<td>Combined</td>
<td>0.8–1.5</td>
</tr>
</tbody>
</table>

You may reduce the combined aggregate lime ratio for OGFC to 0.5 from 1.0 percent.

The lime ratio for fine and coarse aggregate must be within ±0.2 percent of the lime ratio in the accepted JMF. The lime ratio must be within ±0.2 percent of the authorized lime ratio when you combine the individual aggregate sizes in the JMF proportions. The lime ratio must be determined before the addition of RAP.

The device controlling lime and aggregate proportioning must produce a treatment data log. The log consists of a series of data sets captured at 10-minute intervals throughout daily treatment. The data must be a treatment activity register and not a summation. The material represented by a data set is the quantity produced 5 minutes before and 5 minutes after the capture time. For the duration of the Contract, collected data must be stored by the controller.

If 3 consecutive sets of recorded treatment data indicate deviation more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment.

If a set of recorded treatment data indicates a deviation of more than 0.4 percent above or below the lime ratio in the accepted JMF, stop treatment and do not use the material represented by that set of data in HMA.

If 20 percent or more of the total daily treatment indicates deviation of more than 0.2 percent above or below the lime ratio in the accepted JMF, stop treatment and do not use the day’s treated aggregate in HMA.
If you stop treatment for noncompliance, you must implement corrective action and successfully treat aggregate for a 20-minute period. Notify the Engineer before beginning the 20-minute treatment period.

39-1.02J(6) Proportioning Dry Lime
Proportion dry lime by weight with a continuous operation.

If you use a batch-type proportioning operation for HMA production, control proportioning in compliance with the specifications for continuous mixing plants. Use a separate dry lime aggregate treatment operation from HMA batching operations including:

1. Pugmill mixer
2. Controller
3. Weigh belt for the lime
4. Weigh belt for the aggregate

If using a continuous mixing operation for HMA without lime marinated aggregates, use a controller that measures the blended aggregate weight after any additional water is added to the mixture. The controller must determine the quantity of lime added to the aggregate from the aggregate weigh belt input in connection with the manually input total aggregate moisture, the manually input target lime content, and the lime proportioning system output. Use a continuous aggregate weigh belt and pugmill mixer for the lime treatment operation in addition to the weigh belt for the aggregate proportioning to asphalt binder in the HMA plant. If you use a water meter for moisture control for lime treatment, the meter must comply with Materials Plant Quality Program manual.

At the time of mixing dry lime with aggregate, the aggregate moisture content must ensure complete lime coating. The aggregate moisture content must not cause aggregate to be lost between the point of weighing the combined aggregate continuous stream and the dryer. Add water for mixing and coating aggregate to the aggregate before dry lime addition. Immediately before mixing lime with aggregate, water must not visibly separate from aggregate.

The HMA plant must be equipped with a bag-house dust system. Material collected in the dust system must be returned to the mix.

39-1.02J(7) Proportioning Lime Slurry
Proportion lime and water with a continuous or batch operation.

Add lime to the aggregate as slurry consisting of mixed dry lime and water at a ratio of 1 part lime to from 2 to 3 parts water by weight. The slurry must completely coat the aggregate.

Immediately before mixing lime slurry with the aggregate, water must not visibly separate from the aggregate.

39-1.02J(8) Mixing Dry Lime and Aggregate
Mix aggregate, water, and dry lime with a continuous pugmill mixer with twin shafts. Immediately before mixing lime with aggregate, water must not visibly separate from the aggregate. Store dry lime in a uniform and free-flowing condition. Introduce dry lime to the pugmill in a continuous operation. The introduction must occur after the aggregate cold feed and before the point of proportioning across a weigh belt and the aggregate dryer. Prevent loss of dry lime.

The pugmill must be equipped with paddles arranged to provide sufficient mixing action and mixture movement. The pugmill must produce a homogeneous mixture of uniformly coated aggregates at mixer discharge.

If the aggregate treatment operation is stopped longer than 1 hour, clean the equipment of partially treated aggregate and lime.

Aggregate must be completely treated before introduction into the mixing drum.

39-1.02J(9) Mixing Lime Slurry and Aggregate
Proportion lime slurry and aggregate by weight in a continuous operation.
39-1.02J(10) Production

Before virgin aggregate is treated, it must comply with the aggregate quality specifications. Do not test treated aggregate for quality control except for gradation. The Department does not test treated aggregate for acceptance except for gradation.

The Engineer determines the combined aggregate gradation during HMA production after you have treated the aggregate.

Treated aggregate must not have lime balls or clods.

For any of the following, the Engineer orders proportioning operations stopped if you:

1. Do not submit the treatment data log
2. Do not submit the aggregate quality control data for marinated aggregate
3. Submit incomplete, untimely, or incorrectly formatted data
4. Do not take corrective actions
5. Take late or unsuccessful corrective actions
6. Do not stop treatment when proportioning tolerances are exceeded
7. Use malfunctioning or failed proportioning devices

If you stop treatment, notify the Engineer of any corrective actions taken and conduct a successful 20-minute test run before resuming treatment.

If marination is required, marinate treated aggregate in stockpiles from 24 hours to 60 days before using in HMA. Do not use aggregate marinated longer than 60 days.

39-1.02K Spreading and Compacting Equipment

39-1.02K(1) General

Paving equipment for spreading must be:

1. Self-propelled
2. Mechanical
3. Equipped with a screed or strike-off assembly that can distribute HMA the full width of a traffic lane
4. Equipped with a full-width compacting device
5. Equipped with automatic screed controls and sensing devices that control the thickness, longitudinal grade, and transverse screed slope

Install and maintain grade and slope references.

The screed must produce a uniform HMA surface texture without tearing, shoving, or gouging.

The paver must not leave marks such as ridges and indentations unless you can eliminate them by rolling.

Rollers must be equipped with a system that prevents HMA from sticking to the wheels. You may use a parting agent that does not damage the HMA or impede the bonding of layers.

In areas inaccessible to spreading and compacting equipment:

1. Spread the HMA by any means to obtain the specified lines, grades and cross sections.
2. Use a pneumatic tamper, plate compactor, or equivalent to achieve thorough compaction.

39-1.02K(2) Method Compaction Equipment

For method compaction, each paver spreading HMA must be followed by 3 rollers:

1. One vibratory roller specifically designed to compact HMA. The roller must be capable of at least 2,500 vibrations per minute and must be equipped with amplitude and frequency controls. The roller’s gross static weight must be at least 7.5 tons.
2. One oscillating type pneumatic-tired roller at least 4 feet wide. Pneumatic tires must be of equal size, diameter, type, and ply. The tires must be inflated to 60 psi minimum and maintained so that the air pressure does not vary more than 5 psi.
3. One steel-tired, 2-axle tandem roller. The roller’s gross static weight must be at least 7.5 tons.
Each roller must have a separate operator. Rollers must be self-propelled and reversible.
Compact RHMA-G-SP under the specifications for compacting HMA except do not use pneumatic-tired rollers.
Compact OGFC with steel-tired, 2-axle tandem rollers. If placing over 300 tons of OGFC per hour, use at least 3 rollers for each paver. If placing less than 300 tons of OGFC per hour, use at least 2 rollers for each paver. Each roller must weigh between 126 to 172 pounds per linear inch of drum width. Turn the vibrator off.

39-1.02K(3) Material Transfer Vehicle
A material transfer vehicle (MTV) must be used when placing HMA-O, or RHMA-O.

The MTV must:
1. Either receive HMA directly from trucks or use a windrow pickup head to load it from a windrow deposited on the roadway surface.
2. Transfer HMA directly into the paver's receiving hopper or feed system.
3. Remix the HMA, with augurs, before loading the paver.
4. Have sufficient capacity to prevent stopping the paver.

39-1.03 CONSTRUCTION
39-1.03A General
Do not pave HMA on a wet pavement or frozen surface.

For miscellaneous areas and dikes, prepare the area to receive HMA. Preparing the area includes excavating and backfilling as needed. Spread HMA in 1 layer and compact to the specified lines and grades.

39-1.03B Surface Preparation
39-1.03B(1) General
Prepare subgrade or apply tack coat to surfaces receiving HMA. If specified, place geosynthetic pavement interlayer over a coat of asphalt binder.

39-1.03B(2) Subgrade
Subgrade to receive HMA-SP (Type A), or HMA-SP (Type C) must comply with the compaction and elevation tolerance specifications in the sections for the material involved. Subgrade must be free of loose and extraneous material. If HMA-SP (Type A), or HMA-SP (Type C) is paved on existing base or pavement, remove loose paving particles, dirt, and other extraneous material by any means including flushing and sweeping.

39-1.03B(3) Tack Coat
Apply tack coat:
1. To existing pavement including planed surfaces
2. Between HMA layers
3. To vertical surfaces of:
 3.1. Curbs
 3.2. Gutters
 3.3. Construction joints

Before placing HMA, apply tack coat in 1 application at the minimum residual rate specified for the condition of the underlying surface:
Tack Coat Application Rates for HMA

<table>
<thead>
<tr>
<th>HMA over:</th>
<th>Minimum Residual Rates (gal/sq yd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSS1/CSS1h, SS1/SS1h and QS1/QS1h Asphaltic Emulsion</td>
</tr>
<tr>
<td>New HMA (between layers)</td>
<td>0.02</td>
</tr>
<tr>
<td>Existing AC and PCC pavement</td>
<td>0.03</td>
</tr>
<tr>
<td>Planed pavement</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Tack Coat Application Rates for OGFC

<table>
<thead>
<tr>
<th>OGFC over:</th>
<th>Minimum Residual Rates (gal/sq yd)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSS1/CSS1h, SS1/SS1h and QS1/QS1h Asphaltic Emulsion</td>
</tr>
<tr>
<td>New HMA</td>
<td>0.03</td>
</tr>
<tr>
<td>Existing AC and PCC pavement</td>
<td>0.05</td>
</tr>
<tr>
<td>Planed pavement</td>
<td>0.06</td>
</tr>
</tbody>
</table>

If you dilute asphaltic emulsion, mix until homogeneous before application.

Apply to vertical surfaces with a residual tack coat rate that will thoroughly coat the vertical face without running off.

If you request and the Engineer authorizes, you may:

1. Change tack coat rates
2. Omit tack coat between layers of new HMA during the same work shift if:
 2.1. No dust, dirt, or extraneous material is present
 2.2. Surface is at least 140 degrees F

Immediately in advance of placing HMA, apply additional tack coat to damaged areas or where loose or extraneous material is removed.

Close areas receiving tack coat to traffic. Do not track tack coat onto pavement surfaces beyond the job site.

Asphalt binder tack coat temperature must be from 285 to 350 degrees F when applied.

39-1.03B(4) Geosynthetic Pavement Interlayer

Place geosynthetic pavement interlayer in compliance with the manufacturer’s recommendations.

Before placing the geosynthetic pavement interlayer and asphalt binder:

1. Repair cracks 1/4 inch and wider, spalls, and holes in the pavement. Repairing cracks is change order work.
2. Clean the pavement of loose and extraneous material.

Immediately before placing the interlayer, apply 0.25 gallon ± 0.03 gallon of asphalt binder per square yard of interlayer or until the fabric is saturated. Apply asphalt binder the width of the geosynthetic pavement interlayer plus 3 inches on each side. At interlayer overlaps, apply asphalt binder on the lower interlayer the same overlap distance as the upper interlayer.

Align and place the interlayer with no overlapping wrinkles, except a wrinkle that overlaps may remain if it is less than 1/2 inch thick. If the overlapping wrinkle is more than 1/2 inch thick, cut the wrinkle out and overlap the interlayer no more than 2 inches.
The minimum HMA thickness over the interlayer must be 0.12 foot thick including conform tapers. Do not place the interlayer on a wet or frozen surface.

Overlap the interlayer borders between 2 inches and 4 inches. In the direction of paving, overlap the following roll with the preceding roll at any break.

You may use rolling equipment to correct distortions or wrinkles in the interlayer.

If asphalt binder tracked onto the interlayer or brought to the surface by construction equipment causes interlayer displacement, cover it with a small quantity of HMA.

Before placing HMA on the interlayer, do not expose the interlayer to:

1. Traffic except for crossings under traffic control and only after you place a small HMA quantity
2. Sharp turns from construction equipment
3. Damaging elements

Pave HMA on the interlayer during the same work shift.

39-1.03C Transporting, Spreading, and Compacting

39-1.03C(1) General

You may deposit HMA in a windrow and load it in the paver if:

1. Paver is equipped with a hopper that automatically feeds the screed
2. Loading equipment can pick up the windrowed material and deposit it in the paver hopper without damaging base material
3. Activities for deposit, pick-up, loading, and paving are continuous
4. HMA temperature in the windrow does not fall below 260 degrees F

HMA deposited in a windrow on the roadway surface must not extend more than 100 feet in front of the MTV.

You may pave HMA in 1 or more layers on areas less than 5 feet wide and outside the traveled way including shoulders. You may use mechanical equipment other than a paver for these areas. The equipment must produce a uniform smoothness and texture.

HMA handled, spread, or windrowed must not stain the finished surface of any improvement including pavement.

Do not use petroleum products such as kerosene or diesel fuel to release HMA from trucks, spreaders, hand tools or compactors.

HMA must be free of:

1. Segregation
2. Coarse or fine aggregate pockets
3. Hardened lumps

Longitudinal joints in the top layer must match specified lane edges. Alternate longitudinal joint offsets in lower layers at least 0.5 foot from each side of the specified lane edges. You may request other longitudinal joint placement patterns.

Until the adjoining through lane's top layer has been paved, do not pave the top layer of:

1. Shoulders
2. Tapers
3. Transitions
4. Road connections
5. Driveways
6. Curve widening
7. Chain control lanes
8. Turnouts
9. Turn pockets
If the number of lanes change, pave each through lane's top layer before paving a tapering lane's top layer. Simultaneous to paving a through lane's top layer, you may pave an adjoining area's top layer including shoulders. Do not operate spreading equipment on any area's top layer until completing final compaction.

If a leveling course using HMA-SP (Type A), or HMA-SP (Type C) is specified, fill and level irregularities and ruts with HMA-SP (Type A) before spreading HMA over base, existing surfaces, or bridge decks. You may use mechanical equipment other than a paver for these areas. The equipment must produce a uniform smoothness and texture. HMA used to change an existing surface's cross slope or profile is not a leveling course.

If placing HMA against the edge of existing pavement, sawcut or grind the pavement straight and vertical along the joint and remove extraneous material without damaging the surface remaining in place. If placing HMA against the edge of a longitudinal or transverse construction joint and the joint is damaged or not placed to a neat line, sawcut or grind the pavement straight and vertical along the joint and remove extraneous material without damaging the surface remaining in place. Repair or remove and replace damaged pavement at your expense.

Rolling must leave the completed surface compacted and smooth without tearing, cracking, or shoving. Complete finish rolling activities before the pavement surface temperature is:

1. Below 150 degrees F for HMA-SP (Type A), or HMA-SP (Type C) with unmodified binder
2. Below 140 degrees F for HMA-SP (Type A), or HMA-SP (Type C) with modified binder
3. Below 200 degrees F for RHMA-SP-G

If a vibratory roller is used as a finish roller, turn the vibrator off.

Do not use a pneumatic tired roller to compact RHMA-SP-G.

If a 3/4-inch aggregate grading is specified, you may use a 1/2-inch aggregate grading if the specified paved thickness is from 0.15 to 0.20 foot thick.

Spread and compact HMA as specified for method compaction in section 39-1.03C(2) for any of the following conditions:

1. Specified paved thickness is less than 0.15 foot.
2. Specified paved thickness is less than 0.20 foot and a 3/4-inch aggregate grading is specified and used.
3. Specified paved thickness is less than 0.25 foot and a 1-inch aggregate grading is specified and used.
4. You spread and compact at:
 4.1. Asphalt concrete surfacing replacement areas
 4.2. Leveling courses
 4.3. Areas the Engineer determines conventional compaction and compaction measurement methods are impeded

Do not open new HMA pavement to traffic until its mid-depth temperature is below 160 degrees F.

If you request and the Engineer authorizes, you may cool HMA-SP (Type A), or HMA-SP (Type C) with water when rolling activities are complete. Apply water under section 17.

Spread sand at a rate between 1 pound and 2 pounds per square yard on new RHMA-SP-G, and RHMA-O pavement when finish rolling is complete. Sand must be free of clay or organic matter. Sand must comply with section 90-1.02C(3). Keep traffic off the pavement until spreading sand is complete.

39-1.03C(2) Method Compaction
Pave HMA in maximum 0.25-foot thick compacted layers.

If the surface to be paved is both in sunlight and shade, pavement surface temperatures are taken in the shade.

Spread HMA-SP (Type A), or HMA-SP (Type C) only if atmospheric and surface temperatures are:
Minimum Atmospheric and Surface Temperatures

<table>
<thead>
<tr>
<th>Compacted Layer Thickness, feet</th>
<th>Atmospheric, °F</th>
<th>Surface, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmodified Asphalt Binder</td>
<td>Modified Asphalt Binder</td>
<td>Unmodified Asphalt Binder</td>
</tr>
<tr>
<td>< 0.15</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>0.15 – 0.25</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

*Except asphalt rubber binder.

If the asphalt binder for HMA-SP (Type A), or HMA-SP (Type C) is:

1. Unmodified asphalt binder, complete:
 1.1. First coverage of breakdown compaction before the surface temperature drops below 250 degrees F
 1.2. Breakdown and intermediate compaction before the surface temperature drops below 190 degrees F
 1.3. Finish compaction before the surface temperature drops below 150 degrees F
2. Modified asphalt binder, complete:
 2.1. First coverage of breakdown compaction before the surface temperature drops below 240 degrees F
 2.2. Breakdown and intermediate compaction before the surface temperature drops below 180 degrees F
 2.3. Finish compaction before the surface temperature drops below 140 degrees F

For RHMA-SP-G:

1. Only spread and compact if the atmospheric temperature is at least 55 degrees F and the surface temperature is at least 60 degrees F.
2. Complete the first coverage of breakdown compaction before the surface temperature drops below 280 degrees F.
3. Complete breakdown and intermediate compaction before the surface temperature drops below 250 degrees F
4. Complete finish compaction before the surface temperature drops below 200 degrees F.
5. If the atmospheric temperature is below 70 degrees F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver’s hopper or to the pavement surface.

For HMA-O with unmodified asphalt binder:

1. Only spread and compact if the atmospheric temperature is at least 55 degrees F and the surface temperature is at least 60 degrees F.
2. Complete first coverage using 2 rollers before the surface temperature drops below 240 degrees F.
3. Complete all compaction before the surface temperature drops below 200 degrees F.
4. If the atmospheric temperature is below 70 degrees F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver’s hopper or to the pavement surface.

For HMA-O with modified asphalt binder except asphalt rubber binder:

1. Only spread and compact if the atmospheric temperature is at least 50 degrees F and the surface temperature is at least 50 degrees F.
2. Complete first coverage using 2 rollers before the surface temperature drops below 240 degrees F.
3. Complete all compaction before the surface temperature drops below 180 degrees F.
4. If the atmospheric temperature is below 70 degrees F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until you transfer the mixture to the paver’s hopper or to the pavement surface.

For RHMA-O:
1. Only spread and compact if the atmospheric temperature is at least 55 degrees F and surface temperature is at least 60 degrees F.

2. Complete the 1st coverage using 2 rollers before the surface temperature drops below 280 degrees F.

3. Complete compaction before the surface temperature drops below 250 degrees F.

4. If the atmospheric temperature is below 70 degrees F, cover loads in trucks with tarpaulins. The tarpaulins must completely cover the exposed load until the mixture is transferred to the paver’s hopper or to the pavement surface.

For RHMA-SP-G and OGFC, tarpaulins are not required if the time from discharge to truck until transfer to the paver’s hopper or the pavement surface is less than 30 minutes.

HMA compaction coverage is the number of passes needed to cover the paving width. A pass is 1 roller's movement parallel to the paving in either direction. Overlapping passes are part of the coverage being made and are not a subsequent coverage. Do not start a coverage until completing the prior coverage.

Start rolling at the lower edge and progress toward the highest part.

Perform breakdown compaction of each layer of HMA-SP (Type A), HMA-SP (Type C) and RHMA-SP-G with 3 coverages using a vibratory roller. The speed of the vibratory roller in miles per hour must not exceed the vibrations per minute divided by 1,000. If the HMA-SP (Type A), HMA-SP (Type C) or RHMA-SP-G layer thickness is less than 0.08 foot, turn the vibrator off.

The Engineer may order fewer coverages if the HMA-SP (Type A), or RHMA-SP-G layer thickness is less than 0.15 foot.

The Engineer may order fewer coverages if the HMA-SP (Type C) layer thickness is less than 0.20 foot.

Perform intermediate compaction of each layer of HMA-SP (Type A), HMA-SP (Type C) or RHMA-SP-G with 3 coverages using a pneumatic-tired roller at a speed not to exceed 5 mph.

Perform finish compaction of HMA-SP (Type A), HMA-SP (Type C) and RHMA-SP-G with 1 coverage using a steel-tired roller.

Compact OGFC with 2 coverages using steel-tired rollers.

39-1.03D Rumble Strips

Construct rumble strips in the top layer of HMA surfacing by ground-in or rolled-in methods.

Choose between ground-in or rolled-in rumble strips.

Select the method and equipment for constructing ground-in indentations.

Do not construct rumble strips on structures or approach slabs.

Construct rumble strips within 2 inches of the specified alignment. The grinding equipment must be equipped with a sighting device enabling the operator to maintain the rumble strip alignment.

Indentations must comply with the specified dimensions within 0.06 inch in depth and 10 percent in length and width.

The Engineer orders grinding or removal and replacement of noncompliant rumble strips to bring them within specified tolerances. Ground surface areas must be neat and uniform in appearance.

The grinding equipment must be equipped with a vacuum attachment to remove residue from the roadbed.

Dispose of removed material.

On ground areas, apply fog seal coat under section 37-2.

39-1.03E Vertical Joints

If you perform half-width paving, at the end of each day's work the distance between the ends of adjacent surfaced lanes must not be greater than can be completed in the following day of normal paving.
Before opening the lane to public traffic, pave shoulders and median borders adjacent to a lane being paved.

Do not leave a vertical joint more than 0.15 foot high between adjacent lanes open to traffic.

Place HMA on adjacent traveled way lanes so that at the end of each work shift the distance between the ends of HMA layers on adjacent lanes is between 5 to 10 feet. Place additional HMA along the transverse edge at each lane's end and along the exposed longitudinal edges between adjacent lanes. Hand rake and compact the additional HMA to form temporary conforms. You may place Kraft paper or another approved bond breaker under the conform tapers to facilitate the taper removal when paving operations resume.

39-1.03F Widening
If widening existing pavement, construct new structural section on both sides of the existing pavement to match the elevation of the existing pavement's edge for the project's entire length before placing HMA over the existing pavement.

If widening existing pavement, construct new structural section on both sides of the existing pavement to match the elevation of the existing pavement's edge at each location before placing HMA over the existing pavement.

If widening existing pavement, construct new structural section on both sides of the existing pavement to match the elevation of the existing pavement's edge in increments of at least _____ feet before placing HMA over the existing pavement.

39-1.03G Conform Tapers
Place shoulder conform tapers concurrently with the adjacent lane's paving.

Place additional HMA-SP (Type A) along the pavement's edge to conform to road connections and private drives. Hand rake, if necessary, and compact the additional HMA to form a smooth conform taper.

39-1.04 PAYMENT
The weight of each HMA mixture shown in the Bid Item List is the combined mixture weight.

If tack coat, asphalt binder, and asphaltic emulsion are paid as separate bid items, their bid items are measured under section 92 or section 94.

If recorded batch weights are printed automatically, the bid item for HMA is measured by using the printed batch weights, provided:

1. Total aggregate and supplemental fine aggregate weight per batch is printed. If supplemental fine aggregate is weighed cumulatively with the aggregate, the total aggregate batch weight must include the supplemental fine aggregate weight.
2. Total asphalt binder weight per batch is printed.
3. Each truckload's zero tolerance weight is printed before weighing the first batch and after weighing the last batch.
4. Time, date, mix number, load number and truck identification is correlated with a load slip.
5. Copy of the recorded batch weights is certified by a licensed weigh master and submitted.

Place hot mix asphalt dike of the type specified is measured along the completed length.

Place hot mix asphalt (miscellaneous areas) is measured as the in-place compacted area.

HMA-SP (Type A) for dike and miscellaneous areas are measured by weight.

Geosynthetic pavement interlayer is measured by the square yard for the actual pavement area covered.

The Department does not adjust the unit price for an increase or decrease in the tack coat quantity. Section 9-1.06 does not apply.

If the dispute resolution independent third party determines the Department's test results are correct, the Engineer deducts the independent third party's testing costs from payments. If the independent third party determines your test results are correct, the Department pays the independent third party's testing costs.
Rumble strips are measured by the station along the length of the rumble strips without deductions for gaps between indentations.